Answer:
His weight on Earth is 1097.6N
Explanation:
You have to apply Newton's Second Law, F = m×a where F is force, m is mass and a is accerleration. Then, you have to substitute the following values into the equation :

Let m = 112kg,
Let a = 9.8m/s²,


1. 168.1 Hz
To find the apparent frequency heard by the driver in the car, we can use the formula for the Doppler effect:

where
f is the original sound of the horn
v is the speed of sound
is the velocity of the observer (the driver and the car), which is positive if the observer is moving towards the source and negative if it is moving away
is the velocity of the sound source (the train), which is positive if the source is moving away from the observer and negative otherwise
In this problem we have, according to the sign convention used:

Substituting, we find:

2. 
The speed of light can be calculated as

where
d is the distance travelled
t is the time taken
In this problem:
is the total distance travelled by the laser beam (twice the distance between the Earth and the Moon)
t = 2.60 s is the time taken
Substituting in the formula,

Answer:
<h2>
15m/s</h2>
Explanation:
The equation for a traveling wave as expressed as y(x, t) = A cos(kx −
t) where An is the amplitude f oscillation,
is the angular velocity and x is the horizontal displacement and y is the vertical displacement.
From the formula;
where;

Before we can get the transverse speed, we need to get the frequency and the wavelength.
frequency = 1/period
Given period = 2/15 s
Frequency = 
frequency = 1 * 15/2
frequency f = 15/2 Hertz
Given wavelength
= 2m
Transverse speed 

Hence, the transverse speed at that point is 15m/s
Answer:
A. 11.5 m
Explanation:
Given,
The initial velocity of the soda cap, u = 15 m/s
The soda bottle cap is projected vertically upwards,
Hence, the angle formed with the ground, Ф = 90°
The maximum height of the projectile is given by the formula,

Substituting the given values in the above equation

= 11.5 m
Hence, the maximum height of the cap is h = 11.5 m
Answer:
calculating displacement.
Explanation:
It's not true that displacement and distance would be the same always. Displacement is always smaller than or equal to distance as it is the smallest path between the initial and final point whereas distance is the measure of the total path covered.