The answer is B because 13 m/s is a greater acceleration than 10 m/s in the same amount of time.
Answer:
(a) The initial speed required is 13116 m/s
(b) The escape speed is 10394 m/s
This problem involves the application of newtons laws of gravitation. The forces in action here are conservative and as a result mechanical energy is conserved.
The full calculation can be found in the attachment below.
Explanation:
In both parts (a) and (b) the energy conservation equation were used. Assumption was made that when the object is very far from the planet the distance from the planet's center approaches infinity and the gravitational potential energy approaches zero.
The calculation can be found below.
Answer:
29274.93096 m/s




Explanation:
= Distance at perihelion = 
= Distance at aphelion = 
= Velocity at perihelion = 
= Velocity at aphelion
m = Mass of the Earth = 5.98 × 10²⁴ kg
M = Mass of Sun = 
Here, the angular momentum is conserved

Earth's orbital speed at aphelion is 29274.93096 m/s
Kinetic energy is given by

Kinetic energy at perihelion is 
Potential energy is given by

Potential energy at perihelion is 

Kinetic energy at aphelion is 
Potential energy is given by

Potential energy at aphelion is 
Answer:
If resistance increases current decreases.
Explanation:
- Current is <em>inversely proportional</em> to the resistance.
- from the relation given below, we can clearly see the relation between current and resistance;
V=IR
I ∝ 1/R
This relation shows that when resistance increases,current decreases.
Answer:
ggy h Jr scythe fund the CT h hytgy6fhhj