The period of the pendulum is directly proportional to the square root of the length of the pendulum
Explanation:
The period of a simple pendulum is given by the equation

where
T is the period
L is the length of the pendulum
g is the acceleration of gravity
From the equation, we see that when the length of the pendulum increases, the period of the pendulum increases as the square root of L,
. This means that
The period of the pendulum is directly proportional to the square root of the length of the pendulum
From the equation, we also notice that the period of a pendulum does not depend on its mass.
#LearnwithBrainly
Answer:
B. Magnetic Force
Explanation:
two pieces of irons cannot attract each other unless at least one of them is magnetize. That force is called magnetism.
The gravitation force is quartered when two objects' masses are halved without changing their distance.
Gravitational law states that the force of attraction and repulsion between two objects is directly proportional to the product of their masses and inversely proportional to the square of their distance apart.
F=(KM1 M2)/r^2
K= Gravitation force constant
M1M2 = masses of the object
r = distance between objects
When M1 and M2 are halved, it becomes M1/2 and M2/2
F=(K M1/2 x M2/2)/r^2
F=(K (M1 x M2)/4)/r^2
F=(KM1 x M2)/(4r^2 )
Recall
F=(KM1 x M2)/r^2
Therefore
F=F/4
Learn more about gravitational force here:
brainly.com/question/25408095
#SPJ4
Answer:
can you translate that plz
Explanation:
Answer:
<u>A</u>
Explanation:
The heart cells must contract simultaneously to move blood.
This means that it needs to act fast and efficiently.
Therefore, the connections among heart cells are characterized by :
- having many branches
- having many communicating junctions
The correct option should be <u>A</u>