Answer:
scientists will use absolute dating to find how old a fossil exactly is.
Answer:
<h3>C no.</h3>
Explanation:
<h2><em>M</em><em>a</em><em>r</em><em>k</em><em> </em><em>m</em><em>e</em><em> </em><em>m</em><em>e</em><em> </em><em>b</em><em>r</em><em>a</em><em>i</em><em>n</em><em>l</em><em>i</em><em>e</em><em>s</em><em>t</em><em> </em><em>p</em><em>l</em><em>z</em><em> </em><em>i</em><em> </em><em>r</em><em>e</em><em>a</em><em>l</em><em>l</em><em>y</em><em> </em><em>n</em><em>e</em><em>e</em><em>d</em><em> </em><em>i</em><em>t</em><em> </em><em>(⌒▽⌒)</em></h2>
Using a basking spot so some sort of heated object, for example heating lamp or heating pad.
Given the the current flowing in the circuit and the elapsed time, the charge that passes through the LED is 1260 Coulombs.
<h3>What is Current?</h3>
Current is simply the rate of flow of charged particles i.e electrons caused by EMF or voltage.
If a charge passes through the cross-section of a conductor in a given time, the current I is expressed as;
I = Q/t
Where Q is the charge and t is time elapsed.
Given the data in the question;
- Time elapsed t = 1hr = 3600s
- Current I = 350mA = 0.35A
We substitute our given values into the expression above to determine the charge.
I = Q/t
Q = I × t
Q = 0.35A × 3600s
Q = 1260C
Therefore, given the the current flowing in the circuit and the elapsed time, the charge that passes through the LED is 1260 Coulombs.
Learn more about current here: brainly.com/question/3192435
#SPJ1
<span>1. Plasma membrane - also known as cell membrane. It is 'the skin of a cell', which acts as a physically controlling barrier for the entrance and exit of materials. It's made up of proteins and lipids.
2. Cytoplasm - everything inside the cell (but not including the nucleus). Much of the cytoplasm is a transparent and gel-like material known as cytosol; cell structures are suspended in it.
3. Ribosomes - these are organelles that are in charge of making proteins.
<span>4. DNA - Molecules containing the genetic code of a cell, which tells the cell what to do. It is located in the nucleus for eukaryotic cells; for prokaryotic cells, it is located in a part of the cell called the nucleoid.</span></span>