Answer:
Explanation:
All substances have characteristic physical and chemical properties. Physical properties are those that can be observed with the senses without changing the identity of the substance. Chemical properties describe how a substance can be changed into a new substance. Physical and chemical properties, such as color, density, boiling point, solubility, conductivity, and flammability, A. are always different between substances. B. depend on the amount of the substance. C. do not depend on the amount of the substance. D. have the same values for all substances.
Ask for details Follow Report by S27754738 2 hours ago
Answers
Answer:
kinetic energy = 0.1168 J
Explanation:
From Hooke's law, we know that ;
F = kx
k = F/x
We are given ;
Mass; m = 1.95 kg
Spring stretch; d = x = 0.0865
So, Force = mg = 1.95 × 9.81
k = 1.95 × 9.81/0.0865 = 221.15 N/m
Now, initial energy is;
E1 = mgL + ½k(x - L)²
Also, final energy; E2 = ½kx² + ½mv²
From conservation of energy, E1 = E2
Thus;
mgL + ½k(x - L)² = ½kx² + ½mv²
Making the kinetic energy ½mv² the subject, we have;
½mv² = mgL + ½k(x - L)² - ½kx²
We are given L=0.0325 m
Plugging other relevant values, we have ;
½mv² = (1.95 × 9.81 × 0.0325) + (½ × 221.15(0.0865 - 0.0325)² - ½(221.15 × 0.0865²)
½mv² = 0.62170875 + 0.3224367 - 0.82734979375
½mv² = 0.1168 J
Biodiversity refers to the huge variety of all organisms present on the Earth, which conform to the natural world.
- The term biodiversity can be considered as a contraction of "biological diversity" and it was developed by Dr. Walter G. Rosen in 1985.
- Biodiversity includes all biological kingdoms, i.e., Eukaryota (animals, plants, fungi, and protists), Archaea and Bacteria.
- Biodiversity can be defined as different values which can be used to measure the genetic variation and variations at organismal (species) and ecosystem levels.
In conclusion, biodiversity refers to the huge variety of all organisms present on the Earth, which conform to the natural world.
Learn more about biodiversity here:
brainly.com/question/11542363
Hello I hope you are having a great day :)
Your question: When a light switch is turned on, the light comes on immediately because....
The answer is: the electrons in the wire are instantly "pushed" by a voltage difference making the the light switch on.
Hopefully that helps you :)
Answer: Choice B
There are triple bonds between the carbon (C) and oxygen (O) atoms. Then there are 2 dots on either side
==========================================================
Explanation:
When it comes to interaction and chemistry, all that matters is the valence shell or valence electrons. This is the outermost shell. This is because various elements do not interact with the inner electrons (they're locked in place so to speak and don't move to other elements).
Carbon has 6 protons, which is what uniquely makes up this element. This means there are 6 electrons. The inner shell has 2 electrons and the valence shell has 4 electrons. Two electrons are shown as the two blue dots on the left side of the C. The other two electrons form two of the lines, or the bonds, between the C and O.
-------------
Oxygen has 8 protons and 8 electrons. It has 2 electrons in the inner shell and 6 electrons in the valence shell. Two of those electrons are the red dots on the right side of the O. The other 4 electrons are shared to form the bonds with the carbon atom.
This is where things get a bit tricky. I've shown a diagram below indicating that one of the oxygen electrons (red dot) is passed to the carbon, as this carbon atom is pulling on the oxygen electron. But the oxygen atom is pulling on it as well, which forms one of the triple bonds.
So this is why diagram B is the final answer. This is something you can logically determine (remembering the rules of how each electron shell is formed), or it's something you'll need to memorize. In the real world, it's easy to forget a lot of info like this, so that's why having it handy as a lookup reference is preferable.