Area of square=side^2
25=side^2
Side=5
For the given equation ⇒⇒⇒

and the given range 0 ≤ x ≤ π
We should note that the zeros of the denominator will be at
cos x = 0
∴

So, the given equation is undefined at π/2
So, <span>the students error is the division by zero.
</span>
See the attached figure which represents the graph of the given equation and we can see it is undefined at π/2
<span /><span />
Answer:
x=10
Step-by-step explanation:
1/2x-2+3
+2 +2
1/2x=5
---- ---
1/2 1/2
x=10
Direction: Opens Down
Vertex:
(
0
,
81
)
(0,81)
Focus:
(
0
,
323
4
)
(0,3234)
Axis of Symmetry:
x
=
0
x=0
Directrix:
y
=
325
4
y=3254
Select a few
x
x
values, and plug them into the equation to find the corresponding
y
y
values. The
x
x
values should be selected around the vertex.
Tap for more steps...
x
y
−
2
77
−
1
80
0
81
1
80
2
77
xy-277-180081180277
Graph the parabola using its properties and the selected points.
Direction: Opens Down
Vertex:
(
0
,
81
)
(0,81)
Focus:
(
0
,
323
4
)
(0,3234)
Axis of Symmetry:
x
=
0
x=0
Directrix:
y
=
325
4
y=3254
x
y
−
2
77
−
1
80
0
81
1
80
2
77
xy-277-180081180277
f
(
x
)
=
8
1
−
x
2
?
?
f(x)=81-x2??
f
(
x
)
=
81
−
x
2
x
?
f(x)=81-x2x?
f
(
x
)
=
81
−
x
2
x
2
?
f(x)=81-x2x2?
f
(
x
)
=
81
−
x
2
x
3
?
f(x)=81-x2x3?
(
)
|
[
]
√
≥
π
7
8
9
Direction: Opens Down
Vertex:
(
0
,
81
)
(0,81)
Focus:
(
0
,
323
4
)
(0,3234)
Axis of Symmetry:
x
=
0
x=0
Directrix:
y
=
325
4
y=3254
Select a few
x
x
values, and plug them into the equation to find the corresponding
y
y
values. The
x
x
values should be selected around the vertex.
Tap for more steps...
x
y
−
2
77
−
1
80
0
81
1
80
2
77
xy-277-180081180277
Graph the parabola using its properties and the selected points.
Direction: Opens Down
Vertex:
(
0
,
81
)
(0,81)
Focus:
(
0
,
323
4
)
(0,3234)
Axis of Symmetry:
x
=
0
x=0
Directrix:
y
=
325
4
y=3254
x
y
−
2
77
−
1
80
0
81
1
80
2
77
xy-277-180081180277
f
(
x
)
=
8
1
−
x
2
?
?
f(x)=81-x2??
f
(
x
)
=
81
−
x
2
x
?
f(x)=81-x2x?
f
(
x
)
=
81
−
x
2
x
2
?
f(x)=81-x2x2?
f
(
x
)
=
81
−
x
2
x
3
?
f(x)=81-x2x3?
(
)
|
[
]
√
≥
π
7
8
9
Direction: Opens Down
Vertex:
(
0
,
81
)
(0,81)
Focus:
(
0
,
323
4
)
(0,3234)
Axis of Symmetry:
x
=
0
x=0
Directrix:
y
=
325
4
y=3254
Select a few
x
x
values, and plug them into the equation to find the corresponding
y
y
values. The
x
x
values should be selected around the vertex.
Tap for more steps...
x
y
−
2
77
−
1
80
0
81
1
80
2
77
xy-277-180081180277
Graph the parabola using its properties and the selected points.
Direction: Opens Down
Vertex:
(
0
,
81
)
(0,81)
Focus:
(
0
,
323
4
)
(0,3234)
Axis of Symmetry:
x
=
0
x=0
Directrix:
y
=
325
4
y=3254
x
y
−
2
77
−
1
80
0
81
1
80
2
77
xy-277-180081180277
f
(
x
)
=
8
1
−
x
2
?
?
f(x)=81-x2??
f
(
x
)
=
81
−
x
2
x
?
f(x)=81-x2x?
f
(
x
)
=
81
−
x
2
x
2
?
f(x)=81-x2x2?
f
(
x
)
=
81
−
x
2
x
3
?
f(x)=81-x2x3?
(
)
|
[
]
√
≥
π
7
8
9
Direction: Opens Down
Vertex:
(
0
,
81
)
(0,81)
Focus:
(
0
,
323
4
)
(0,3234)
Axis of Symmetry:
x
=
0
x=0
Directrix:
y
=
325
4
y=3254
Select a few
x
x
values, and plug them into the equation to find the corresponding
y
y
values. The
x
x
values should be selected around the vertex.
Tap for more steps...
x
y
−
2
77
−
1
80
0
81
1
80
2
77
xy-277-180081180277
Graph the parabola using its properties and the selected points.
Direction: Opens Down
Vertex:
(
0
,
81
)
(0,81)
Focus:
(
0
,
323
4
)
(0,3234)
Axis of Symmetry:
x
=
0
x=0
Directrix:
y
=
325
4
y=3254
x
y
−
2
77
−
1
80
0
81
1
80
2
77
xy-277-180081180277
f
(
x
)
=
8
1
−
x
2
?
?
f(x)=81-x2??
f
(
x
)
=
81
−
x
2
x
?
f(x)=81-x2x?
f
(
x
)
=
81
−
x
2
x
2
?
f(x)=81-x2x2?
f
(
x
)
=
81
−
x
2
x
3
?
f(x)=81-x2x3?
(
)
|
[
]
√
≥
π
7
8
9
vvvvv
Answer:
1.6e+13
Step-by-step explanation:
50*200^5=1,600,000,000,000