Unless you're able to provide a diagram representing the problem, there's not much I can do so solve this problem.
It is important to have the correct bond angles of the different atoms and the shape of the molecule due to following reasons;
Among other properties the polarity of compounds mainly depend upon the shape and bond angles of that particular compound. For example, considering the molecule of water, we already know that it is a polar molecule with partially positive hydrogen atoms and partially negative oxygen atoms and acts as universal solvent. The bond angle in water is about 104.5° with a Bent geometry. Unlike carbon dioxide (CO₂) which has Linear structure with bond angle 180° and is non-polar in nature therefore, the bent geometry in water is responsible for the polarity.
Other properties which can also be predicted by predicting the bond angles along with molecular geometries are;
i) Magnetism
ii) Phase of matter
iii) Color
iv) Reactivity
v) Biological activities <em>e.t.c</em>
A solution (in this experiment solution of NaNO₃) freezes at a lower temperature than does the pure solvent (deionized water). The higher the
solute concentration (sodium nitrate), freezing point depression of the solution will be greater.
Equation describing the change in freezing point:
ΔT = Kf · b · i.
ΔT - temperature change from pure solvent to solution.
Kf - the molal freezing point depression constant.
b - molality (moles of solute per kilogram of solvent).
i - Van’t Hoff Factor.
First measure freezing point of pure solvent (deionized water). Than make solutions of NaNO₃ with different molality and measure separately their freezing points. Use equation to calculate Kf.
Answer: The correct answer is -297 kJ.
Explanation:
To solve this problem, we want to modify each of the equations given to get the equation at the bottom of the photo. To do this, we realize that we need SO2 on the right side of the equation (as a product). This lets us know that we must reverse the first equation. This gives us:
2SO3 —> O2 + 2SO2 (196 kJ)
Remember that we take the opposite of the enthalpy change (reverse the sign) when we reverse the equation.
Now, both equations have double the coefficients that we would like (for example, there is 2S in the second equation when we need only S). This means we should multiply each equation (and their enthalpy changes) by 1/2. This gives us:
SO3 —>1/2O2 + SO2 (98 kJ)
S + 3/2O2 —> SO3 (-395 kJ)
Now, we add the two equations together. Notice that the SO3 in the reactants in the first equation and the SO3 in the products of the second equation cancel. Also note that O2 is present on both sides of the equation, so we must subtract 3/2 - 1/2, giving us a net 1O2 on the left side of the equation.
S + O2 —> SO2
Now, we must add the enthalpies together to get our final answer.
-395 kJ + 98 kJ = -297 kJ
Hope this helps!
I believe the answer you are looking for is the 4th one.