The test for this is fairly simple.
We take a glowing match or splint near the gas sample, if the glow intensifies, oxygen is present.
If a lit splint or match goes out with a popping sound, this means that hydrogen is present.
Answer:
Identify each equation as a composition reaction, a decomposition reaction, or neither.
Fe2O3 + 3 SO3 → Fe2(SO4)3
NaCl + AgNO3 → AgCl + NaNO3
(NH4)2Cr2O7 → Cr2O3 + 4 H2O + N2
Solution
In this equation, two substances combine to make a single substance. This is a composition reaction.
Two different substances react to make two new substances. This does not fit the definition of either a composition reaction or a decomposition reaction, so it is neither. In fact, you may recognize this as a double-replacement reaction.
A single substance reacts to make multiple substances. This is a decomposition reaction.
Test Yourself
Identify the equation as a composition reaction, a decomposition reaction, or neither.
C3H8 → C3H4 + 2 H2
Explanation:
I hope I help :)))
C16H32O2(aq) --> 16CO2(g) + 16H2O(l) ... said its wrong though?
<span>This is because you haven't added any oxygen needed for the combustion, so your equation does'nt balance. Also a solution in water [aq] doesn't burn! </span>
<span>Try </span><span>C16H32O2(s) + 23O2(g) --> 16CO2(g) + 16H2O(l)
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
</span>
According to sources, the most probable answer to this query is the enzymes and waste products that are collected by the nephron from the blood. Thank you for your question. Please don't hesitate to ask in Brainly your queries.
Answer:
Explanation:
From the information given:


no of moles of
= 0.01 L × 0.0010 mol/L
no of moles of
= 
no of moles of
= 0.01 L × 0.00010 mol/L
no of moles of
= 
Total volume = 0.02 L
![[Ca^{2+}}] = \dfrac{1\times10^{-5} \ mol}{0.02 \ L} \\ \\ \\ \[[Ca^{2+}}] = 0.0005 \ mol/L](https://tex.z-dn.net/?f=%5BCa%5E%7B2%2B%7D%7D%5D%20%3D%20%5Cdfrac%7B1%5Ctimes10%5E%7B-5%7D%20%5C%20mol%7D%7B0.02%20%5C%20L%7D%20%5C%5C%20%5C%5C%20%20%5C%5C%20%20%5C%5B%5BCa%5E%7B2%2B%7D%7D%5D%20%3D%200.0005%20%5C%20mol%2FL)
![[F^{-}] = \dfrac{(1\times 10^{-6} \ mol)}{0.02 \ L}](https://tex.z-dn.net/?f=%5BF%5E%7B-%7D%5D%20%3D%20%5Cdfrac%7B%281%5Ctimes%2010%5E%7B-6%7D%20%5C%20mol%29%7D%7B0.02%20%5C%20L%7D)
![[F^{-}] = 5 \times 10^{-5} \ mol/L](https://tex.z-dn.net/?f=%5BF%5E%7B-%7D%5D%20%3D%205%20%5Ctimes%2010%5E%7B-5%7D%20%20%5C%20mol%2FL)
![Q = [Ca^{2+}][F^-]^2 \\ \\ Q = 0.0005 \times (5\times 10^{-5})^2 \\ \\ Q = 1.25 \times 10^{-12}](https://tex.z-dn.net/?f=Q%20%3D%20%5BCa%5E%7B2%2B%7D%5D%5BF%5E-%5D%5E2%20%5C%5C%20%5C%5C%20Q%20%3D%200.0005%20%5Ctimes%20%285%5Ctimes%2010%5E%7B-5%7D%29%5E2%20%5C%5C%20%5C%5C%20Q%20%3D%201.25%20%5Ctimes%2010%5E%7B-12%7D)
Since Q<ksp, then there will no be any precipitation of CaF2