N = 273
273 / 7 = 39
Dividend / divisor = quotient
Work Backwards:
n/7 = 39
n = 39 X 7
n = 273
Answer:
2,674.14 g
Step-by-step explanation:
Recall that the formula for radioactive decay is
N = N₀ e^(-λt)
where,
N is the amount left at time t
N₀ is the initial amount when t=0, (given as 42,784 g)
λ = coefficient of radioactive decay
= 0.693 ÷ Half Life
= 0.693 ÷ 18
= 0.0385
t = time elapsed (given as 72 years)
e = exponential constant ( approx 2.7183)
If we substitute these into our equation:
N = N₀ e^(-λt)
= (42,787) (2.7183)^[(-0.0385)(72)]
= (42,787) (2.7183)^(-2.7726)
= (42,787) (0.0625)
= 2,674.14 g
(Bowls, Height) (1, 2) (5,5)
Slope is (5-2)/(5-1) = 3/4 inch
y = (3/4)x + b
(2) = (3/4)(1) + b
(2)-(3/4) = b
B=1.25. Y= 0.75*x + 1.25.
Part B
X is the number of bowls in the stack and Y is the corresponding height of the stack.
I don't know if that is factor-able. It looks like you could just subtract and get 64t. which would lead to the answer being zero since you divide by zero when isolating the variable t.