Okay. There is a simple formula to go with this where:
p = mv
P: Momentum.
M: Mass.
V: Velocity
Sub the numbers in and solve for M.
10.0 = m(1.5)
10.0/1.5 = m
6.67 kg = m
Therefore the mass of the ball is 6.67kg.
After one half-life, 8 g of radioactive isotope will remain in the sample.
<h3>What is radioactivity?</h3>
The act of producing radiation spontaneously is known as radioactivity. This is accomplished by an unstable atomic nucleus that want to give up some energy in order to move to a more stable form.
The following formula is used to compute the number of half lives elapsed:

Hence,8 gram of radioactive isotope remains in the sample after 1 half-life.
To learn more about the radioactivity, refer to the link;
brainly.com/question/1770619
#SPJ1
2) acceleration = final velocity - initial velocity / time —> V-U/T
Acceleration is the change in velocity over the change in time so it can be represented by the equation a = Δv/Δt.
3) first one- F=10.5 N
second one- 4 m/s^2
third one- 1200N
Player A needs the least amount of energy. The ball is light weight and she is closest to the goal so the momentum need to kick the ball will be the least and the distance is has to travel is the shortest. But player C needs the most amount of energy. The ball is heavy so it will take the most momentum to move the ball and over such a long distance. Hope this help idrk.