Ice Wedging and Plant Growth
The linear speed of the ladybug is 4.1 m/s
Explanation:
First of all, we need to find the angular speed of the lady bug. This is given by:

where
T is the period of revolution
The period of revolution is the time taken by the ladybug to complete one revolution: in this case, since it does 1 revolution every second, the period is 1 second:
T = 1 s
Therefore, the angular speed is

Now we can find the linear speed of the ladybug, which is given by

where:
is the angular speed
r = 65.0 cm = 0.65 m is the distance of the ladybug from the axis of rotation
Substituting, we find

Learn more about angular speed:
brainly.com/question/9575487
brainly.com/question/9329700
brainly.com/question/2506028
#LearnwithBrainly
Answer:
everyone else does this to me so lol
Explanation:
Answer:

Explanation:
In order to calculate the angular momentum of the particle you use the following formula:
(1)
r is the position vector respect to the point (0 , 5.0), that is:
r = 0m i + 5.0m j (2)
p is the linear momentum vector and it is given by:
(3)
the direction of p comes from the fat that the particle is moving along the i + j direction.
Then, you use the results of (2) and (3) in the equation (1) and solve for L:

The angular momentum is -30 kgm^2/s ^k
Answer:
the spring compressed is 0.1878 m
Explanation:
Given data
mass = 3 kg
spring constant k = 750 N/m
vertical distance h = 0.45
to find out
How far is the spring compressed
solution
we will apply here law of mass of conservation
i.e
gravitational potential energy loss = gain of eastic potential energy of spring
so we say m×g×h = 1/2× k × e²
so e² = 2×m×g×h / k
so
we put all value here
e² = 2×m×g×h / k
e² = 2×3×9.81×0.45 / 750
e² = 0.0353
e = 0.1878 m
so the spring compressed is 0.1878 m