1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Likurg_2 [28]
3 years ago
12

A 5-mm-thick stainless steel strip (k = 21 W/m·K, rho = 8000 kg/m3, and cp = 570 J/kg·K) is being heat treated as it moves throu

gh a furnace at a speed of 1 cm/s. The air temperature in the furnace is maintained at 840°C with a convection heat transfer coefficient of 80 W/m2·K. If the furnace length is 3 m and the stainless steel strip enters it at 20°C, determine the surface temperature gradient of the strip at mid-length of the furnace. (Round the final answer to the nearest whole number.)

Physics
2 answers:
schepotkina [342]3 years ago
6 0

Answer:

1170 Kelvin/meter

Explanation:

See attached pictures.

aivan3 [116]3 years ago
3 0

Answer:

The surface temperature gradient is given as 1170.137 K/m

Explanation:

In to obtain the surface temperature gradient we need to obtain the characteristics length and the formula for this is

                                 L_c = \frac{V}{A_s}

Where V is the volume of the ball and  A_s is the surface area of the particle

     Now let assume a one-dimensional heat transfer and that width of the strip is negligible

        Hence the surface area would be the two opposite surface of the strip which means that the volume is obtained by multiplying surface area and the thickness

          Mathematically

                    V = A *L

        and     A_s =2A

Substituting this into the formula above

             L_c = \frac{(A*L)}{(2A)}

                 =\frac{L}{2}  

Note that  L in this equation is the thickness of the plate and from the question it is equal to 5 mm

 So

               L_c = \frac{5}{2} = 2.5 \ mm

      In order to obtain the temperature of the gradient of the strip we need to obtain the temperature of the strip at mid-length of the furnace

  and the formula is

                  e^{-bt} = \frac{T(t)-T_\infty }{T_i-T_\infty}

Where T_\infty is the ambient temperature  = 900 °C

            T_i is the initial temperature  = 20 °C

            b is obtained with the formula

                             b =\frac{hA_s}{\rho C_p V}

           replacing  V with A_s * L_c  

                   b = \frac{hA_s}{\rho C_p L_c}

                    =\frac{h}{\rho C_p L_c}

 Where h is the heat transfer coefficient  \rho is the density , C_p is the specific heat at constant pressure  and L_c is the characteristics length

           Substituting

80 \ W/m^2\cdot K \ for \ h  \ 8000kg /m^3 \ for \ \rho , \ 570J/kg \ \cdot K \ for \ C_p \ and \\\\2.5mm \ for L_c

          b = \frac{80}{y(8000)* 570 * [2.5 \ mm}\frac{10^{-3 }m}{1mm} ]}

            =\frac{80} {8* 570* 2.5}

           = 0.007017 \ s^{-1}

       t is the of the stainless-steel  strip being heated and the formula is

                    t = \frac{(I_f/2)}{v}

       Where I_f is the length of the furnace , and v is the speed

       Substituting  3 m for  I_f  and 1 cm/s for v

                     t =\frac{(3/2)}{[1 cm/s \ * \frac{10^{-2}m}{1cm} ]}

                       = \frac{1.5}{10^{-2}}

                       = 150s

Substituting the obtained value into the formula for temperature of strip at mid-length of the furnace we have

                    e^{(-0.007017 s^{-2})(150s)} = \frac{T(t)- 900}{20 - 900}

                    T(t) = 900 + (20-900) (e^{(0.007017)(150)})

                           =592.839°C

     Now to obtain the surface temperature gradient of the strip at mid-length of the furnace we would apply this formula

                 h = \frac{-k[\frac{\delta T}{\delta y} ]_{y=0}}{T(t)-T_{\infty}}

=>        [\frac{\delta T}{\delta y} ]_{y=0}} =\frac{h}{k}  (T(t) - T_{\infty})

           Where h is the convection heat transfer coefficient

            Where [\frac{\delta T}{\delta y} ]_{y=0}} is the surface temperature gradient of the strip at mid-length of the furnace

      T(t) is the temperature of the strip at mid-length of the furnace , T_{\infty} the ambient temperature  and k is the thermal conductivity

      Substituting \ 80 \ W/m^2 \cdot K for h \ , \ 592.839 ^oC \ for \ T(t) \ , \ 900 ^o C\\for  \ T_{\infty }  \ and \ 21 W/m \ \cdot \ K \ for \ k

            So

                  [\frac{\delta T}{\delta y} ]_{y=0}} =-\frac{80}{21} (592.839 -900)

                              =1170.137 K/m

   

You might be interested in
A 500 W immersion heater is placed in a pot containing 1.00 L of water at 20oC. (a) How long will the water take to rise to the
tatiyna

Answer:

96 s.

Explanation:

(a)

From the question,

Q = cm(t₂-t₁)................... Equation 1

Where Q = heat required to boil the water, c = specific heat capacity of the water, m = mass of the water, t₂ = final temperature of water, t₁ = initial temperature of water

Note: The boiling point of water = 100 °C

Given: c = 4200 J/kg.°C, t₂ = 100 °C, t₁ = 20 °C

mass of water = density×volume

m = D×v, Where D = 1000 kg/m³, v = 1.00 L = 0.001 m³

Hence, m = 1000×0.001 = 1 kg.

Substitute into equation 1

Q = 4200×1(100-20)

Q = 4200×8

Q = 33600 J.

But,

P = Q/t................... Equation 2

make t  the subject of the equation

t = Q/P................. Equation 3

Where P = power, t = time

From the question,

70 % of the available energy is absorbed by water.

P = 0.7×500 = 350 W.

Substitute into equation 2

t = 33600/350

t = 96 s.

6 0
3 years ago
When a neutrally charged atom loses an electron to another atom, the result is the creation of
Ostrovityanka [42]
That would make a cation. If it gained one instead, then it would make an anion.
5 0
3 years ago
Can anyone tell me what's the base quantities for Force, Pressure and Charge?​
mr Goodwill [35]

Force, pressure, and charge are all what are called <em>derived units</em>. They come from algebraic combinations of <em>base units</em>, measures of things like length, time, temperature, mass, and current. <em>Speed, </em>for instance, is a derived unit, since it's a combination of length and time in the form [speed] = [length] / [time] (miles per hour, meters per second, etc.)

Force is defined with Newton's equation F = ma, where m is an object's mass and a is its acceleration. It's unit is kg·m/s², which scientists have called a <em>Newton</em>. (Example: They used <em>9 Newtons</em> of force)

Pressure is force applied over an area, defined by the equation P = F/A. We can derive its from Newtons to get a unit of N/m², a unit scientists call the <em>Pascal</em>. (Example: Applying <em>100 Pascals </em>of pressure)

Finally, charge is given by the equation Q = It, where I is the current flowing through an object and t is how long that current flows through. It has a unit of A·s (ampere-seconds), but scientist call this unit a Coulomb. (Example: 20 <em>Coulombs</em> of charge)

4 0
3 years ago
What should be the indication on the magnetic compass as you roll into a standard rate turn to the right from a northerly headin
lapo4ka [179]

Answer:

The compass will indicate a turn to the left.

Explanation:

The magnetic compass has a needle pointing towards north. It is used for navigation and it shows direction with respect to the geographical cardinal direction.

As we move to the right of the northerly heading in northern Hemisphere, the direction of needle will move towards left but with a faster rate as now the direction of north is no his left.

This shows the compass if following its direction properly.

4 0
3 years ago
You go to the hardware store to buy a new 50 ft garden hose. You find you can choose between hoses of ½ inch and 5/8 inch inner
omeli [17]

To solve this problem it is necessary to consider two concepts. The first of these is the flow rate that can be defined as the volumetric quantity that a channel travels in a given time. The flow rate can also be calculated from the Area and speed, that is,

Q = V*A

Where,

A= Cross-sectional Area

V = Velocity

The second concept related to the calculation of this problem is continuity, which is defined as the proportion that exists between the input channel and the output channel. It is understood as well as the geometric section of entry and exit, defined as,

Q_1 = Q_2

V_1A_1=V_2A_2

Our values are given as,

A_1=\frac{1}{2}^2*\pi=0.785 in^2

A_2=\frac{5}{8}^2*\pi=1.227 in^2

Re-arrange the equation to find the first ratio of rates we have:

\frac{V_1}{V_2}=\frac{A_2}{A_1}

\frac{V_1}{V_2}=\frac{1.227}{0.785}

\frac{V_1}{V_2}=1.56

The second ratio of rates is

\frac{V2}{V1}=\frac{A_1}{A2}

\frac{V2}{V1}=\frac{0.785}{1.227}

\frac{V2}{V1}=0.640

3 0
4 years ago
Other questions:
  • What is the period that corresponds to a<br> frequency of 39.5 Hz?<br> Answer in units of s.
    7·1 answer
  • I need to know the answer and explanation if possible !
    12·1 answer
  • A large lightning bolt consists of a 18.2~\text{kA}18.2 kA current that moved 30.0~\text{C}30.0 C of charge. Assuming a constant
    12·2 answers
  • In a standard tensile test, a steel rod of 7 8-in. diameter is subjected to a tension force of 17 kips. Knowing that ν = 0.30 an
    6·1 answer
  • Jeff is a landscaping contractor and lifts a rock weighing 600 pounds by wedging a board under the rock. Jeff weighs 150 pounds
    11·2 answers
  • You hold a ruler that has a charge on its tip 6 cm above a small piece of tissue paper to see if it can be picked up. The ruler
    7·1 answer
  • Please help on this one?
    12·1 answer
  • When momentum is conserved it is called _____. (multiple choice)
    12·1 answer
  • What type of cells don't have cell walls.
    15·2 answers
  • Draw an energy chain diagram to show energy transformations for this event:
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!