Answer:
d. magnesium sulfide, mgs
Explanation:
Ionic bonds or also called eletrovalent bond is one of the chemical bonds that forms between the atoms of molecules or compounds. It is the kind of bond that forms between a positively charged atom and a negatively charged atom. The positive atom transfers electrons to the negative atom.
In this question, Magnesium Sulfide, MgS is a compound whose atoms are held together by ionic bonds. The magnesium ion (cation) transfers its two valence electrons to the sulfur ion (anion) to form the stable MgS.
Answer:
moles B = 2.32 moles
Explanation:
In this case, we can assume that both gases are ideals, so we can use the expression for an ideal gas which is:
PV = nRT
From here, we can calculate the total moles (n) that are in the container, and then, by difference, we can calculate how much we have of gas B.
For this case, we will use R = 0.082 L atm / mol K. Solving for n:
n = PV/RT
n = 5 * 20 / 0.082 * 303
n = 4.02 moles
If we have 4.02 moles between the two gases, and we have 1.70 from gas A, then from gas B we simply have:
Total moles = moles A + moles B
moles B = Total moles - moles A
moles B = 4.02 - 1.70
moles B = 2.32 moles
We have 2.32 moles of gas B
Answer:
it is a because blood is pumped but heart so the answer is A
Answer:
496 g of Fe₂O₃.
Explanation:
The balanced equation for the reaction is given below:
4Fe + 3O₂ —> 2Fe₂O₃
From the balanced equation above,
4 moles of Fe reacted to produce 2 moles of Fe₂O₃.
Therefore, 6.20 moles of Fe will react to produce = (6.20 × 2)/4 = 3.1 moles of Fe₂O₃
Finally, we shall determine the mass of 3.1 moles of Fe₂O₃. This can be obtained as follow:
Mole of Fe₂O₃ = 3.1 moles
Molar mass of Fe₂O₃ = (56 × 2) + (3×16)
= 112 + 48
= 160 g/mol
Mass of Fe₂O₃ =?
Mass = mole × molar mass
Mass of Fe₂O₃ = 3.1 × 160
Mass of Fe₂O₃ = 496 g
Therefore, 496 g of Fe₂O₃ were produced from the reaction.