Answer:
Option A (9.0) is the correct alternative.
Explanation:
The given values are:
Molarity,
= 1.5 M
Volume,
= 6000 mL
or,
= 6 L
As we know,
⇒ 
or,
⇒ 
By putting the values, we get


<span>In each case, the same bond gets broken - the bond between the hydrogen and oxygen in an -OH group. Writing the rest of the molecule as "X"
</span>
The factors to consider
Two of the factors which influence the ionisation of an acid are:
<span>the strength of the bond being broken,the stability of the ions being formed.</span>
In these cases, you seem to be breaking the same oxygen-hydrogen bond each time, and so you might expect the strengths to be similar.
The formula C2H4 can be classified as both a molecular formula
and an empirical formula. The answer is number 4.
Answer
7665 years
Procedure
Let N₀ be the amount of carbon-14 present in a living organism. According to the radioactive decay law, the number of carbon-14 atoms, N, left in a dead tissue sample after a certain time, t, is given by the exponential equation:
N = N₀e^(-λt)
where λ is the decay constant which is related to half-life (T1/2) by the equation:

Here, ln(2) is the natural logarithm of 2.
The percent of carbon-14 remaining after time t is given by N/N₀.
Using the first equation, we can determine λt.
The half-life of carbon-14 is 5,720 years, thus, we can calculate λ using the second equation, and then find t.

Solving the second equation for t, and using the λ we have just calculated we will have
t= 7665 years
One end has a specific binding site for a particular amino acid and the other end the sequence that can pair with a codon, called an anticodon. The DNA code is translated into messenger RNA when the RNA polymerase binds to it and makes the mRNA copy.