Given that:
- At 25C the density of water is 0.997044 g/mL.
From the information attached below, we have the following parameters.
The density of water calculation using a bottle.
Initial volume of Final volume of Mass of water Density (g/mL)
burette (mL) burette (mL) dispensed (g)
Sample 1 2.33 7.34 5.000 -----
Sample 2 7.34 12.37 5.025 -----
Sample 3 12.37 18.50 6.112 -----
Sample 4 18.50 24.57 6.064 -----
Sample 5 24.57 31.31 6.720 -----
The first thing we need to do is to determine the change in the volume of the burette in each sample from the above information.
- The change in the volume of the burette = (final volume - the initial volume) mL
Sample 1:
= (7.34 - 2.33) mL
= 5.01 mL
Sample 2:
= (12.37 - 7.34) mL
= 5.03 mL
Sample 3:
= (18.50 - 12.37) mL
= 6.03 mL
Sample 4:
= (24.57 - 18.50) mL
= 6.07 mL
Sample 5:
= (31.31 - 24.57) mL
= 6.74 mL
The mass of the water dispersed in sample 1 is given as = 5.000 g
Using the relation for calculating the density of each, we have:
Sample 1
![\mathbf{density = \dfrac{mass}{volume}}](https://tex.z-dn.net/?f=%5Cmathbf%7Bdensity%20%3D%20%5Cdfrac%7Bmass%7D%7Bvolume%7D%7D)
![\mathbf{density = \dfrac{5.01 g}{5.000 ml}}](https://tex.z-dn.net/?f=%5Cmathbf%7Bdensity%20%3D%20%5Cdfrac%7B5.01%20g%7D%7B5.000%20ml%7D%7D)
density = 0.998004 g/ml
Sample 2:
![\mathbf{density = \dfrac{5.025 g}{5.03ml}}](https://tex.z-dn.net/?f=%5Cmathbf%7Bdensity%20%3D%20%5Cdfrac%7B5.025%20g%7D%7B5.03ml%7D%7D)
density = 0.999006 g/ml
Sample 3:
![\mathbf{density = \dfrac{6.112 g}{6.13ml}}](https://tex.z-dn.net/?f=%5Cmathbf%7Bdensity%20%3D%20%5Cdfrac%7B6.112%20g%7D%7B6.13ml%7D%7D)
density = 0.997064 g/ml
Sample 4:
![\mathbf{density = \dfrac{6.064 \ g}{6.07 \ ml}}](https://tex.z-dn.net/?f=%5Cmathbf%7Bdensity%20%3D%20%5Cdfrac%7B6.064%20%5C%20g%7D%7B6.07%20%5C%20ml%7D%7D)
density = 0.999012 g/ml
Sample 5:
![\mathbf{density = \dfrac{6.720 \ g}{6.74 \ ml}}](https://tex.z-dn.net/?f=%5Cmathbf%7Bdensity%20%3D%20%5Cdfrac%7B6.720%20%5C%20g%7D%7B6.74%20%5C%20ml%7D%7D)
density = 0.997033 g/ml
Thus, the average density for all the samples is:
![\mathbf{= \dfrac{( 0.998004 + 0.999006 + 0.997064 + 0.999012 + 0.997033 )}{5}}](https://tex.z-dn.net/?f=%5Cmathbf%7B%3D%20%5Cdfrac%7B%28%200.998004%20%2B%200.999006%20%2B%200.997064%20%2B%20%20%200.999012%20%20%2B%200.997033%20%20%29%7D%7B5%7D%7D)
= 0.998024
∴
The percentage error for the two densities measurement is:
![=\dfrac{ (experimental \ value -theoretical \ value)\times 100 }{theoretical \ value}](https://tex.z-dn.net/?f=%3D%5Cdfrac%7B%20%28experimental%20%5C%20%20value%20-theoretical%20%20%5C%20value%29%5Ctimes%20100%20%7D%7Btheoretical%20%20%5C%20value%7D)
Given that the theoretical value = 0.997044 g/ml
Then;
![\mathbf{= \dfrac{(0.998024 - 0.997044)100}{0.997044}}](https://tex.z-dn.net/?f=%5Cmathbf%7B%3D%20%5Cdfrac%7B%280.998024%20-%200.997044%29100%7D%7B0.997044%7D%7D)
= 0.0983%
Therefore, we can conclude that the percent error for the two density measurements is 0.0983%
Learn more about density here:
brainly.com/question/24386693?referrer=searchResults