Explanation:
It is known that the value of Avogadro's number is
.
Therefore, calculate moles of gold atoms as follows.
Moles of gold atom = 
= 
=
mol
= 1.99 mol
Thus, we can conclude that 1.99 mol of gold atoms are equivalent to
atoms.
Answer:
Problem, Variables, Hypothesis, Research, Procedure, Data, Conclusion.
Explanation:
First, you have to know what the problem that you're talking about is. Then, you have to know the independent, dependent, and controlled variables are in order to make a hypothesis. Then do research about the topic. After that, you make the procedure your experiment, if that's what your doing. Then after the experiment, you find the data. Using that data, you make a conclusion.
Because pure silicon is a perfect semiconductor.
For room temperature, it rarely conducts, you can search for the threshold temperature, the characteristic equation is fairly complicated.
Surface tension increases by increasing the intermolecular forces.
<h3>What is intermolecular forces?</h3>
The electromagnetic forces of attraction or repulsion that act between atoms and other types of nearby particles, such as atoms or ions, are examples of intermolecular forces (IMFs), also known as secondary forces.
Between molecules, intermolecular forces are at work. In contrast, molecules themselves exert intramolecular pressures. In comparison to intramolecular forces, intermolecular forces are weaker. Intermolecular forces include things like the London dispersion force, dipole-dipole interaction, ion-dipole interaction, and van der Waals forces.
Intermolecular forces come in five flavors: ion-induced dipole forces, dipole-induced dipole forces, induced dipole forces, and dipole-dipole forces. Ions and polar (dipole) molecules are held together by ion-dipole forces.
To learn more about intermolecular forces from the given link:
brainly.com/question/9007693
#SPJ4