If the data set represents the number of rings each person is wearing, being: 0,2,4,0,2,3,2,8,6, the interquartile range of the data is 2. Being, 4 as the Q1, 3 as the Q2 or median, and 6 as the Q3. Where the formula of getting the interquartile range is IQR= Q1-Q2.
1/5 five being the denominator, because in math you must always simplify
Answer:
8 17/18 or 8.945
Step-by-step explanation:
2/2x165/9-55/6x3/3
326/18-165/18
161/18= 8 17/18
Answer:
Step-by-step explanation:
Given the expression (x+11)(2x+3)
We want to expand it and write equivalent expression
Generally if we want to expand an expression we will take one of the expression in one bracket and multiply with the other bracket and then take the other expression and multiply it with the other
E.g, (a+b) × (c + d)
Then, we take a × (c+d) and also b × (c+d)
We can do it the other way round too and it will give the same results.
So, applying this to the given expression
(x+11)(2x+3)
x(2x+3) + 11(2x+3)
2x² + 3x + 22x + 33
2x² + 25x + 33
Then, the equivalent expression is 2x² + 25x + 33
(x + 11)(2x + 3) = 2x² + 25x + 33
Which measure of central tendency best describes this situation:
The number of apples in 2-lb bags?
Solution: The best measure of central tendency to describe the numbers of apples in 2-lb bags is mean. Because the variable under consideration is numeric and probably we would not see outliers in 2-lb bags.
Mean is the defined as the sum of observations divided by the number of observation. The mean takes into account all the observation of the data. Mean is most preferable when the data is numeric and there are no outliers in the data.
Therefore, in the given situation, where we have number of apples in 2-lb bags, the mean will be best to use.