1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
galina1969 [7]
3 years ago
13

You have covered a grounded metal surface with a layer of photoconductor. Working in the dark, you sprinkle negative charge onto

this surface. If you now expose only the left half of the photoconductor to light, you will find that
(A) the left half becomes neutral while the right half remains negatively charged.
(B) nothing happens because there is no changing magnetic field.
(C) negative charge flows from the right side of the photoconductor to the left and both sides become neutral.
(D) the right half becomes neutral while the left half remains negatively charged.
Physics
1 answer:
Keith_Richards [23]3 years ago
6 0

Answer:

A. the left half becomes neutral while the right half remains negatively charged

Explanation:

This is because wherever light strikes the photoconductor, it transforms from an insulator into a conductor. The charge will then migrate through it and leaves its surface. By exposing the left half of the photoconductor to light, you allow its local charge to leave and it becomes neutral.

You might be interested in
Water drips from the nozzle of a shower onto the floor 190 cm below. The drops fall at regular (equal) intervals of time, the fi
VARVARA [1.3K]

Answer:

Second drop: 1.04 m

First drop: 1.66 m

Explanation:

Assuming the droplets are not affected by aerodynamic drag.

They are in free fall, affected only by gravity.

I set a frame of reference with the origin at the nozzle and the positive X axis pointing down.

We can use the equation for position under constant acceleration.

X(t) = x0 + v0 * t + 1/2 * a *t^2

x0 = 0

a = 9.81 m/s^2

v0 = 0

Then:

X(t) = 4.9 * t^2

The drop will hit the floor when X(t) = 1.9

1.9 = 4.9 * t^2

t^2 = 1.9 / 4.9

t = \sqrt{0.388} = 0.62 s

That is the moment when the 4th drop begins falling.

Assuming they fall at constant interval,

Δt = 0.62 / 3 = 0.2 s (approximately)

The second drop will be at:

X2(0.62) = 4.9 * (0.62 - 1*0.2)^2 = 0.86 m

And the third at:

X3(0.62) = 4.9 * (0.62 - 2*0.2)^2 = 0.24 m

The positions are:

1.9 - 0.86 = 1.04 m

1.9 - 0.24 = 1.66 m

above the floor

8 0
3 years ago
In the Daytona 500 auto race, a Ford Thunderbird and a Mercedes Benz are moving side by side down a straightaway at 78.5 m/s. Th
Andrews [41]

Answer:

FT is 1020.6 meters (1640.6 meters - 620 meters) far from MB

Explanation:

First you have to consider that the Ford Thunderbird (FT) follows a rectilinear motion with varying acceleration, while Mercedez Benz (MB) has a constant velocity (no acceleration). So if you finde the time spent by FT in each section, and the distance, then you will find the distance for MB.

1) Vf² = Vi² + 2ad, where Vf: final velocity, Vi: ionitial velocity, a: acceleration and d: distance.

For the first portion  (0 m/s)² = (78.5 m/s)² + 2a(250 m) ⇒

-(78.5 m/s)² / 2(250m) = a ⇒ a = -12.3 m/s².

Now, you can find the corresponding time for this section with the following formule: Vf = Vi + at ⇒ 0 m/s = 78.5 m/s + (-12.3 m/s²) t

⇒ t= (-78.5 m/s)/ (-12.3 m/s²) ⇒ t= 6.4 seconds.

2) Then FT spent 5 seconds in the pit.

3) The the FT accelerates until reach 78.5 m/s again in a distance of 370 m.

Vf² = Vi² + 2ad ⇒ (78.5 m/s)² = (0 m/s)² + 2a(370 m)

⇒ (78.5 m/s)²/ 2(370 m) = a ⇒ a = 8.3 m/s²

Then, Vf = Vi + at ⇒ 78.5 m/s = 0 m/2 + (8.3 m/s²) t

⇒ (78.5 m/s)/(8.3 m/s²) = t ⇒ t = 9.5 seconds.

4) Summarizing, the FT moves 620 meters (250 + 370 mts) in 20.9 seconds ( 6.4 s + 5 s + 9.5 s).

5) During this time, MB moves

Velocity = distance/ time ⇒ Velocity x time = Distance

⇒ Distance = (78.5 m/s) x  (20.9 seconds) ⇒ Distance = 1640.6 meters

6) Finally, the FT is 1020.6 meters (1640.6 meters - 620 meters) far from MB

3 0
3 years ago
A dense metal sphere is dropped from a 10-meter tower, and at the exact same time an identical metal sphere is thrown horizontal
givi [52]

Answer:

A. Both spheres land at the same time.

Explanation:

The horizontal motion doesn't affect the vertical motion.  Since the two spheres have the same initial vertical velocity and same initial height, they land at the same time.

7 0
3 years ago
Read 2 more answers
What are some charactersitics of pressure waves
True [87]
Soft target by impact and its contribution to indirect bone fractures.
7 0
3 years ago
An object moving at a constant velocity will always have a
SVETLANKA909090 [29]

Answer:

It will always have a zero acceleration

8 0
3 years ago
Read 2 more answers
Other questions:
  • A 37 N block rests on a horizontal surface. The coefficients of static and kinetic friction between the surface and the block ar
    11·1 answer
  • (HELP ASAP)
    10·2 answers
  • A rocket is launched from rest and moves in a straight line at 30.0 degrees above the horizontal with an acceleration of 35.0 m/
    13·1 answer
  • For an object that is speeding up at a constant rate in the positive direction,
    11·1 answer
  • The more domains that are aligned in a magnet ___________.
    14·1 answer
  • What is the critical angle θcrit for light propagating from a material with index of refraction of 1.50 to a material with inde
    8·1 answer
  • If the Net Force of the object is 30 N to the left, and mass is 3 kg what is the objects acceleration?
    9·1 answer
  • If a cheetah goes from 10 m/s to 30 m/s in 5 seconds, what was her acceleration?
    15·2 answers
  • A 63.3 kg wood board is resting on very smooth ice in the middle of a frozen lake. A 35.7 kg boy stands at one end of the board.
    6·1 answer
  • Jason while driving on Kukum highway at 70 m.s – 1 seeing the traffic light turn red, he applies the brake and comes to rest in
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!