1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vadim26 [7]
3 years ago
13

A long, straight wire with 2 A current flowing through it produces magnetic field strength 1 T at its surface. If the wire has a

radius R, where within the wire is the field strength equal to 84 % of the field strength at the surface of the wire? Assume that the current density is uniform throughout the wire. (μ 0 = 4π × 10-7 T · m/A)
Physics
1 answer:
jeka57 [31]3 years ago
7 0

Answer:

r = 3.36 \times 10^{-7} m

Explanation:

As per Ampere's law of magnetic field we know that

line integral of magnetic field along closed ampere's loop is equal to the product of current enclosed and magnetic permeability of medium

So it is given as

\int B. dl = \mu_0 i_{en}

here we can say that enclosed current is given as

i_{en} = \frac{i}{\pi R^2} (\pi r^2)

now from ampere'e loop law for any point inside the wire we will have

B.(2\pi r) = \mu_o (\frac{ir^2}{R^2}

B = \frac{\mu_0 i r}{2\pi R^2}

now we know that magnetic field inside the wire is 84% of the field at its surface

so we will have

0.84 \frac{\mu_o i}{2\pi R} = \frac{\mu_o i r}{2\pi R^2}

so we have

r = 0.84 R

now we know

\frac{\mu_o i}{2\pi R} = 1

here i = 2 A

R = 2\times 10^{-7} m

so now we have

r = 3.36 \times 10^{-7} m

You might be interested in
A thin, light wire 75.1 cm long having a circular cross section 0.555 mm in diameter has a 25.4 kg weight attached to it, causin
seraphim [82]

Answer:

(a) 3.23×10⁸ N/m²

(b)  1.46×10⁻³

(c) 2.21×10¹¹ N/m²

Explanation:

(a) Stress = Force/Area.

Stress = F/A................ Equation 1

But,

F = mg................. Equation 2

Where m = mass, and g = acceleration due to gravity

A = πd²/4................. Equation 3

d = diameter of the circular cross section.

Substitute equation 2 and equation 3 into equation 1

Stress = 4mg/πd²............. Equation 4

Given: m = 25.4 kg, d = 0.555 mm = 0.000555 m

Constant: g = 9.8 m/s², π = 3.142

Substitute these values into equation 4

Stress = 4(25.4)(9.8)/(3.142×0.00555²)

Stress = 995.68/(3.08×10⁻⁶)

Stress = 3.23×10⁸ N/m²

(b)

Strain = ΔL/L.............. Equation 5

Where ΔL = extension, L = Length.

Given: ΔL = 1.1 mm = 0.0011 m, L = 75.1 cm = 0.751 m

Substitute into equation 5

Strain = 0.0011/0.751

Strain = 1.46×10⁻³.

(c)

Young modulus = Stress/Strain

Young modulus = 3.23×10⁸/ 1.46×10⁻³

Young modulus = 2.21×10¹¹ N/m²

3 0
3 years ago
The thunderbolt bobsled team is training for Olympic Gold. During practice they start a run with a speed of 0.57 m/s, they compl
aleksandr82 [10.1K]
acceleration=\frac{\Delta\ velocity}{\Delta\ time}\\\\
v_{initial}=0,57m/s\\
distance=1360m\\ \Delta\ time=89,49seconds\\\\
v_{final}-v_{initial}=\frac{distance}{time}\\
v_{final}=\frac{distance}{time}+v_{initial}\\
v_{final}=\frac{1360}{89,49}+0,57\\\\v_{final}=15,77\frac{m}{s}\\\\
acceleration=\frac{15,77-0,57}{89,49}=0,17\frac{m}{s^2}\\\\ \boxed{acceleration=0,17\frac{m}{s^2}}
6 0
3 years ago
Why does rubbing a balloons on wool or hair make it attract other objects
KonstantinChe [14]

Answer:

its because static electricity my guy

Explanation:

5 0
3 years ago
Read 2 more answers
mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released from rest from a point 2 feet below the equi
valina [46]

Answer:

The answer is

"x(t)= e^\frac{-t}{2}((\frac{-4}{3})\cos\frac{\sqrt{47}}{2}t- \frac{-64\sqrt{47}}{141} \sin\frac{\sqrt{47}}{2}t)+\frac{10}{3}(\cos(3t)+ \sin (3t))".

Explanation:

Taking into consideration a volume weight = 16 pounds originally extends a springs \frac{8}{3} feet but is extracted to resting at 2 feet beneath balance position.

The mass value is =

W=mg\\m=\frac{w}{g}\\m=\frac{16}{32}\\m= \frac{1}{2} slug\\

The source of the hooks law is stable,

16= \frac{8}{3} k \\\\8k=16 \times 3 \\\\k=16\times \frac{3}{8} \\\\k=6 \frac{lb}{ft}\\\\

Number \frac{1}{2}  times the immediate speed, i.e .. Damping force

\frac{1}{2} \frac{d^2 x}{dt^2} = -6x-\frac{1}{2}\frac{dx}{dt}+10 \cos 3t \\\\\frac{1}{2}  \frac{d^2 x}{dt^2}+ \frac{1}{2}\frac{dx}{dt}+6x =10 \cos 3t \\ \\\frac{d^2 x}{dt^2} +\frac{dx}{dt}+12x=20\cos 3t \\\\

The m^2+m+12=0 and m is an auxiliary equation,

m=\frac{-1 \pm \sqrt{1-4(12)}}{2}\\\\m=\frac{-1 \pm \sqrt{47i}}{2}\\\\\ m1= \frac{-1 + \sqrt{47i}}{2} \ \ \ \ or\ \ \ \ \  m2 =\frac{-1 - \sqrt{47i}}{2}

Therefore, additional feature

x_c (t) = e^{\frac{-t}{2}}[C_1 \cos \frac{\sqrt{47}}{2}t+ C_2 \sin \frac{\sqrt{47}}{2}t]

Use the form of uncertain coefficients to find a particular solution.  

Assume that solution equation,

x_p = Acos(3t)+B sin(3t) \\x_p'= -3A sin (3t) + 3B cos (3t)\\x_p}^{n= -9 Acos(3t) -9B sin (3t)\\

These values are replaced by equation ( 1):

\frac{d^2x}{dt}+\frac{dx}{dt}+ 12x=20 \cos(3t) -9 Acos(3t) -9B sin (3t) -3Asin(3t)+3B cos (3t) + 12A cos (3t) + 12B sin (3t)\\\\3Acos 3t + 3B sin 3t - 3Asin 3t + 3B cos 3t= 20cos(3t)\\(3A+3B)cos3t -(3A-3B)sin3t = 20 cos (3t)\\

Going to compare cos3 t and sin 3 t coefficients from both sides,  

The cost3 t is 3A + 3B= 20 coefficients  

The sin 3 t is 3B -3A = 0 coefficient  

The two equations solved:

3A+3B = 20 \\\frac{3B -3A=0}{}\\6B=20\\B= \frac{20}{6}\\B=\frac{10}{3}\\

Replace the very first equation with the meaning,

3B -3A=O\\3(\frac{10}{3})-3A =0\\A= \frac{10}{3}\\

equation is

x_p\\\\\frac{10}{3} cos (3 t) + \frac{10}{3} sin (3t)

The ultimate plan for both the equation is therefore

x(t)= e^\frac{-t}{2} (c_1 cos \frac{\sqrt{47}}{2}t)+c_2\sin\frac{\sqrt{47}}{2}t)+\frac{10}{3}\cos (3t)+\frac{10}{3}\sin (3t)

Initially, the volume of rest x(0)=2 and x'(0) is extracted by rest i.e.  

Throughout the general solution, replace initial state x(0) = 2,

Replace x'(0)=0 with a general solution in the initial condition,

x(t)= e^\frac{-t}{2} [(c_1 cos \frac{\sqrt{47}}{2}t)+c_2\sin\frac{\sqrt{47}}{2}t)+\frac{10}{3}\cos (3t)+\frac{10}{3}\sin (3t)]\\\\

x(t)= e^\frac{-t}{2} [(-\frac{\sqrt{47}}{2}c_1\sin\frac{\sqrt{47}}{2}t)+ (\frac{\sqrt{47}}{2}c_2\cos\frac{\sqrt{47}}{2}t)+c_2\cos\frac{\sqrt{47}}{2}t)  +c_1\cos\frac{\sqrt{47}}{2}t +c_2\sin\frac{\sqrt{47}}{2}t + \frac{-1}{2}e^{\frac{-t}{2}} -10 sin(3t)+10 cos(3t) \\\\

c_2=\frac{-64\sqrt{47}}{141}

x(t)= e^\frac{-t}{2}((\frac{-4}{3})\cos\frac{\sqrt{47}}{2}t- \frac{-64\sqrt{47}}{141} \sin\frac{\sqrt{47}}{2}t)+\frac{10}{3}(\cos(3t)+ \sin (3t))

5 0
3 years ago
Two identical waves are traveling toward each other in the same medium. One has a positive amplitude, meaning that its peaks onl
Olin [163]
The correct answer is Destructive Interference.

Consider the image attached below. Two waves are travelling towards each other. Blue wave always has a positive peak and the red wave always has a negative peak.

Now imagine these waves are moving through a rope. If blue waves will try to move the rope in positive direction, the red wave will pull it down, and thus the two waves will cancel the effect of each other. Thus resulting in a destructive interference. 

7 0
3 years ago
Read 2 more answers
Other questions:
  • If you adjusted the frequency to be lower than the resonant frequency, would the voltage have been leading ahead of or lagging b
    14·1 answer
  • What is the percentage increase IN kinetic energy(K.E) ,If the momentum(p) of a moving body is increase by 10%?And How? (If K.E=
    15·1 answer
  • Are any minerals flammable
    11·2 answers
  • I takes you 42 minutes to travel 32 miles to Ann Arbor. What was your<br> speed getting there?
    12·1 answer
  • On what factors capacitance of parallel plate capacitor depends?
    13·1 answer
  • What is the net displacement of the particle between 0 seconds and 80 seconds
    9·1 answer
  • 10. A boy weighs 475 N. What is his mass? (acceleration due to gravity on Earth is 9.8m/s2 = g)
    10·1 answer
  • What is the length of the x-component of the vector shown below?
    5·1 answer
  • What is acceleration?​
    10·1 answer
  • Which of Newton’s laws best describes why the penny hung in the air for a split second?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!