I'm pretty sure it's sunscreen
Answer:
Explanation:
Speed is defined as the rate at which an object covers a particular distance. So the formula for determining speed is given as the ratio of distance to time taken for covering that distance.
Speed = Distance/Time
As here the distance is given in km units and time in s units, so the units of any one parameter should be changed. Since we know that speed of sound is always about 300 m/s. So it is better to convert the unit of distance from km to m.
Hence, now the distance traveled by the noise is 2000 m and time taken is 5.8 s.
So the speed of noise = Distance/Time = 2000/5.8=345 m/s.
Thus, the speed of noise is slightly greater than the speed of sound and it is found to be 345 m/s.
At a distance r from a charge e on a particle of mass m the electric field value is 8.9876 × 10⁹ N·m²/C². Divide the magnitude of the charge by the square of the distance of the charge from the point. Multiply the value from step 1 with Coulomb's constant.
<h3>what is magnitude ?</h3>
Magnitude can be defined as the maximum extent of size and the direction of an object.
It is used as a common factor in vector and scalar quantities, as we know scalar quantities are those quantities that have magnitude only and vector quantities are those quantities have both magnitude and direction.
There are different ways where magnitude is used Magnitude of earthquake, charge on an electron, force, displacement, Magnitude of gravitational force
For more details regarding magnitude, visit
brainly.com/question/28242822
#SPJ1
Very specific alignment of the Sun, Earth, and Moon. If the Moon is lined up precisely with the Sun from the Earth's point of view, the Moon will block Sunlight from reaching the Earth, causing a solar eclipse.
Answer:
y = 128.0 km
Explanation:
The minimum separation of two objects is determined by Rayleygh's diffraction criterion, which establishes that two bodies are solved if the first minino of diffraction of one coincides with the central maximum of the second, with this criterion the diffraction equation remains
the diffraction equation for the first minimum is
a sin θ = λ
In the case of circular openings, the equation must be solved in polar coordinates, leaving the expression, we use the approximation that the sine of tea is very small.
θ = 1.22 λ / d
d = 15 cm
to find the distance we can use trigonometry
tan θ = y / L
tan θ = sin θ / cos θ = θ
substituting
y / L = λ / d
y = L λ /d
let's calculate
y = 384 10⁸ 500 10⁻⁹ / 0.15
y = 1.28 10⁵ m
Let's reduce to km
y = 1.28 10⁵ m (1km / 10³ m)
y = 128.0 km
the correct answer is 120 km away