Answer:
if a car is increasing it's acceleration uniformly in a unit time, the graph will be moving away from it's origin. that's how you get this kind of graph.
The work done by the force is 47.1 J
Explanation:
The work done by a force in moving an object is given by
(1)
where
F is the magnitude of the force
d is the distance covered by the object
is the angle between the direction of the force and the motion of the object
In this problem, the force applied to the object is
F = 3.0 N
This force is always tangential to the track: this means that at every instant, the force is parallel to the motion of the object, so

And the distance covered is equal to the circumference of the circle, which is:

where r = 2.5 m is the radius.
Now we can substitute into eq.(1) to find the work done:

Learn more about work:
brainly.com/question/6763771
brainly.com/question/6443626
#LearnwithBrainly
The acceleration of the particle at time t is:

The velocity of the particle at time t is given by the integral of the acceleration a(t):

and the position of the particle at time t is given by the integral of the velocity v(t):

Assuming the particle starts from position x(0)=0 at t=0, the distance the particle covers in the first t=2 seconds can be found by substituting t=2 s in the equation of x(t):
I can see that they are running away like my dad did
Answer: See explanation
Explanation:
The evolutionary stages for the formation of planets from earliest to latest will be:
1. Dust keeps matter inside the disk cool enough for planet formation to start
2. Dust grains form condensation nuclei on which surrounding atoms condense to form small clumps of matter.
3. Small clumps of matter stick together via the process of accretion to form planetesimals a few hundred kilometers in diameter.
4. Planetesimals begin to accrete, forming protoplanets.
5. A collection of a few planet-sized protoplanets remain in a fairly cleared out disk around the star