Answer:
The mean of the cable length is 
The standard deviation of the cable length is 
Half of the cables lie in the specifications.
Step-by-step explanation:
<em>Point a:</em>
Suppose <em>X</em> is a continuous random variable with probability density function <em>f(x).</em>
The mean of a continuous random variable, denoted as <em>μ</em> or <em>E(X)</em> is<em> </em>
<em>
</em>
The standard deviation of <em>X</em> is

where
is the variance of X

We know that the probability density function of the length of computer cables is

Applying the above definition of the mean we get
![E(X)=\int\limits^{1210}_{1200} {0.1x} \, dx =1205\\\\\mathrm{Take\:the\:constant\:out}:\quad \int a\cdot f\left(x\right)dx=a\cdot \int f\left(x\right)dx\\\\0.1\cdot \int _{1200}^{1210}xdx\\\\\mathrm{Apply\:the\:Power\:Rule}:\quad \int x^adx=\frac{x^{a+1}}{a+1},\:\quad \:a\ne -1\\\\0.1\left[\frac{x^{1+1}}{1+1}\right]^{1210}_{1200}\\\\Simplify\\\\0.1\left[0.5x^2\right]^{1210}_{1200}\\\\\mathrm{Compute\:the\:boundaries}:\quad \left[0.5x^2\right]^{1210}_{1200}=12050\\\\0.1\cdot \:12050=1205](https://tex.z-dn.net/?f=E%28X%29%3D%5Cint%5Climits%5E%7B1210%7D_%7B1200%7D%20%7B0.1x%7D%20%5C%2C%20dx%20%3D1205%5C%5C%5C%5C%5Cmathrm%7BTake%5C%3Athe%5C%3Aconstant%5C%3Aout%7D%3A%5Cquad%20%5Cint%20a%5Ccdot%20f%5Cleft%28x%5Cright%29dx%3Da%5Ccdot%20%5Cint%20f%5Cleft%28x%5Cright%29dx%5C%5C%5C%5C0.1%5Ccdot%20%5Cint%20_%7B1200%7D%5E%7B1210%7Dxdx%5C%5C%5C%5C%5Cmathrm%7BApply%5C%3Athe%5C%3APower%5C%3ARule%7D%3A%5Cquad%20%5Cint%20x%5Eadx%3D%5Cfrac%7Bx%5E%7Ba%2B1%7D%7D%7Ba%2B1%7D%2C%5C%3A%5Cquad%20%5C%3Aa%5Cne%20-1%5C%5C%5C%5C0.1%5Cleft%5B%5Cfrac%7Bx%5E%7B1%2B1%7D%7D%7B1%2B1%7D%5Cright%5D%5E%7B1210%7D_%7B1200%7D%5C%5C%5C%5CSimplify%5C%5C%5C%5C0.1%5Cleft%5B0.5x%5E2%5Cright%5D%5E%7B1210%7D_%7B1200%7D%5C%5C%5C%5C%5Cmathrm%7BCompute%5C%3Athe%5C%3Aboundaries%7D%3A%5Cquad%20%5Cleft%5B0.5x%5E2%5Cright%5D%5E%7B1210%7D_%7B1200%7D%3D12050%5C%5C%5C%5C0.1%5Ccdot%20%5C%3A12050%3D1205)
Applying the above definition of the standard deviation we get
First we need to calculate the variance of X

![\int _{1200}^{1210}0.1x^2dx\\\\\mathrm{Take\:the\:constant\:out}:\quad \int a\cdot f\left(x\right)dx=a\cdot \int f\left(x\right)dx\\\\0.1\cdot \int _{1200}^{1210}x^2dx\\\\\mathrm{Apply\:the\:Power\:Rule}:\quad \int x^adx=\frac{x^{a+1}}{a+1},\:\quad \:a\ne -1\\\\0.1\left[\frac{x^{2+1}}{2+1}\right]^{1210}_{1200}\\\\0.1\left[\frac{1}{3}\cdot x^3\right]^{1210}_{1200}\\\\\mathrm{Compute\:the\:boundaries}:\quad \left[\frac{1}{3}\cdot x^3\right]^{1210}_{1200}=14520333.33\\\\0.1\cdot \:14520333.33=1452033.33](https://tex.z-dn.net/?f=%5Cint%20_%7B1200%7D%5E%7B1210%7D0.1x%5E2dx%5C%5C%5C%5C%5Cmathrm%7BTake%5C%3Athe%5C%3Aconstant%5C%3Aout%7D%3A%5Cquad%20%5Cint%20a%5Ccdot%20f%5Cleft%28x%5Cright%29dx%3Da%5Ccdot%20%5Cint%20f%5Cleft%28x%5Cright%29dx%5C%5C%5C%5C0.1%5Ccdot%20%5Cint%20_%7B1200%7D%5E%7B1210%7Dx%5E2dx%5C%5C%5C%5C%5Cmathrm%7BApply%5C%3Athe%5C%3APower%5C%3ARule%7D%3A%5Cquad%20%5Cint%20x%5Eadx%3D%5Cfrac%7Bx%5E%7Ba%2B1%7D%7D%7Ba%2B1%7D%2C%5C%3A%5Cquad%20%5C%3Aa%5Cne%20-1%5C%5C%5C%5C0.1%5Cleft%5B%5Cfrac%7Bx%5E%7B2%2B1%7D%7D%7B2%2B1%7D%5Cright%5D%5E%7B1210%7D_%7B1200%7D%5C%5C%5C%5C0.1%5Cleft%5B%5Cfrac%7B1%7D%7B3%7D%5Ccdot%20x%5E3%5Cright%5D%5E%7B1210%7D_%7B1200%7D%5C%5C%5C%5C%5Cmathrm%7BCompute%5C%3Athe%5C%3Aboundaries%7D%3A%5Cquad%20%5Cleft%5B%5Cfrac%7B1%7D%7B3%7D%5Ccdot%20x%5E3%5Cright%5D%5E%7B1210%7D_%7B1200%7D%3D14520333.33%5C%5C%5C%5C0.1%5Ccdot%20%5C%3A14520333.33%3D1452033.33)


<em>Point b:</em>
To find what proportion of cables is within specifications you need to:
