<span>The correct answer is D. The number 7 is subtracted from the first term, 2x/3, but then an equal sum is added, and the two effectively cancel each other out. This means that the value of the first expression is essentially 2x/3, which is option D.</span>
Answer:
c
Step-by-step explanation:
The correct question is:
Suppose x = c1e^(-t) + c2e^(3t) a solution to x''- 2x - 3x = 0 by substituting it into the differential equation. (Enter the terms in the order given. Enter c1 as c1 and c2 as c2.)
Answer:
x = c1e^(-t) + c2e^(3t)
is a solution to the differential equation
x''- 2x' - 3x = 0
Step-by-step explanation:
We need to verify that
x = c1e^(-t) + c2e^(3t)
is a solution to the differential equation
x''- 2x' - 3x = 0
We differentiate
x = c1e^(-t) + c2e^(3t)
twice in succession, and substitute the values of x, x', and x'' into the differential equation
x''- 2x' - 3x = 0
and see if it is satisfied.
Let us do that.
x = c1e^(-t) + c2e^(3t)
x' = -c1e^(-t) + 3c2e^(3t)
x'' = c1e^(-t) + 9c2e^(3t)
Now,
x''- 2x' - 3x = [c1e^(-t) + 9c2e^(3t)] - 2[-c1e^(-t) + 3c2e^(3t)] - 3[c1e^(-t) + c2e^(3t)]
= (1 + 2 - 3)c1e^(-t) + (9 - 6 - 3)c2e^(3t)
= 0
Therefore, the differential equation is satisfied, and hence, x is a solution.
Let
x----------> charge per hour to rent a jet sky in dollars
y----------> the total cost to rent a jet sky in dollars
we know that
<u>First Jet Sky Company</u>
---------> equation 
<u>Second Jet Sky Company</u>
---------> equation 
we know that
To find the number of hours for which the costs are the same
equate equation
and equation 
The intersection both graphs is the solution of the problem
using a graph tool
see the attached figure
the intersection point is 
That means
For 
the cost of the rent is
in both companies
therefore
<u>the answer is</u>

Answer:-47 3/4
Step-by-step explanation:
The correct answer would be -47 3/4
You would use the equation
-32 1/4 - 15 1/2 = -47 3/4
to find your answer