Answer and Explanation: One ATP release approximately 30.5kJ/mol of energy. Using Avogadro's constant, it is known one mol corresponds to
molecules, so 106 ATP molecules releases:
E = 
E =
J
A cell is approximately a sphere. Volume of a sphere is given by
V = 
Changing radius from mm to m:
r =
m
Then, volume is
V = 
V =
m³
Power density is given by



power = 12.8.
W/m³
Power density for a the cell is 12.8.
W/m³.
Power density for battery is
100 cm³ =
m³
power = 
power =
W/m³
Comparing cell and battery, battery has a greater power density.
Answer:
Explanation:
The experimenter is rotating on his stool with angular velocity ω ( suppose )
His moment of inertia is I say
We are applying no torque from outside . therefore , the angular momentum will remain the same
Thus angular momentum L = I ω = constant
Thus we can say I₁ ω₁ = I₂ω₂ = constant
here I₁ is the initial moment of inertia and ω₁ is the initial angular velocity
Similarly I₂ is the final moment of inertia and ω₂ is the final angular velocity
When a been bag is dropped on his lap , his moment of inertia increases due to increase in mass
In the above equation, when moment of inertia increases , the angular velocity decreases . So its motion of rotation will decrease .
Answer: 2. Solution A attains a higher temperature.
Explanation: Specific heat simply means, that amount of heat which is when supplied to a unit mass of a substance will raise its temperature by 1°C.
In the given situation we have equal masses of two solutions A & B, out of which A has lower specific heat which means that a unit mass of solution A requires lesser energy to raise its temperature by 1°C than the solution B.
Since, the masses of both the solutions are same and equal heat is supplied to both, the proportional condition will follow.
<em>We have a formula for such condition,</em>
.....................................(1)
where:
= temperature difference
- c= specific heat of the body
<u>Proving mathematically:</u>
<em>According to the given conditions</em>
- we have equal masses of two solutions A & B, i.e.

- equal heat is supplied to both the solutions, i.e.

- specific heat of solution A,

- specific heat of solution B,

&
are the change in temperatures of the respective solutions.
Now, putting the above values


Which proves that solution A attains a higher temperature than solution B.
<span>On the y-axis (the bottom of the table) hope this helps</span>
Answer:

Explanation:
We are asked to calculate the force you are applying to a car. According to Newton's Second Law of Motion, force is the product of mass and acceleration. Therefore, we can use the following formula to calculate force.

The mass of the car is 2000 kilograms and the acceleration is 0.5 meters per second squared.
Substitute the values into the formula.

Multiply.

Convert the units. 1 kilogram meter per second squared is equal to 1 Newton. Our answer of 100 kilogram meters per second square is equal to 100 Newtons.

You apply <u>100 Newtons</u> of force to the car.