Answer:
particle's potential energy = 70J
Explanation:
From conservation of energy; K1 + Ue1 = K2 + Ue2
where K1 and K2 are the kinetic energies at two positions and Ue1 and Uue2 are the electrical potential energies at two positions.
k1 = 10J, Ue1 = 100J
K2 = 40J
substitute into K1 + Ue1 = K2 + Ue2
Ue2 = K1 + Ue1 - K2
= 10 +100 - 40
Ue2 = 70J
Answer:
Explanation:
Given that,
At one instant,
Center of mass is at 2m
Xcm = 2m
And velocity =5•i m/s
One of the particle is at the origin
M1=? X1 =0
The other has a mass M2=0.1kg
And it is at rest at position X2= 8m
a. Center of mass is given as
Xcm = (M1•X1 + M2•X2) / (M1+M2)
2 = (M1×0 + 0.1×8) /(M1 + 0.1)
2 = (0+ 0.8) /(M1 + 0.1)
Cross multiply
2(M1+0.1) = 0.8
2M1 + 0.2 =0.8
2M1 = 0.8-0.2
2M1 = 0.6
M1 = 0.6/2
M1 = 0.3kg
b. Total momentum, this is an inelastic collision and it momentum after collision is given as
P= (M1+M2)V
P = (0.3+0.1)×5•i
P = 0.4 × 5•i
P = 2 •i kgm/s
c. Velocity of particle at origin
Using conversation of momentum
Momentum before collision is equal to momentum after collision
P(before) = M1 • V1 + M2 • V2
We are told that M2 is initially at rest, then, V2=0
So, P(before) = 0.3V1
We already got P(after) = 2 •i kgm/s in part b of the question
Then,
P(before) = P(after)
0.3V1 = 2 •i
V1 = 2/0.3 •i
V1 = 6 ⅔ •i m/s
V1 = 6.667 •i m/s
Answer:
E = 3600 J
Explanation:
Given that,
Voltage, V = 115 V
Power of electric bulb, P = 60 W
We need to find the electric energy used in 1 minute. The electric energy use is given by :

Hence, the electrical energy is 3600 J.
Answer:
<u>Toxicity is a quantitative property</u>
Explanation:
- Qualitative property of a object cannot be measured it can just be observed
- Quantitative property of a substance can be measured and be assigned a numerical value .
- <u>The toxicity level of a substance can be measured and be assigned a numeral value </u>
<u />
.
Answer: The magnitude of the velocity = 2/5 m/s
Explanation:
In this question, the magnitude of the velocity is the product of the magnitude of the displacement vector and the magnitude of the component of the velocity that acts in the direction of displacement.
This will be a scalar projection of V onto X
Please find the attached files for the solution