Answer:

Explanation:
For answer this we will use the law of the conservation of the angular momentum.

so:

where
is the moment of inertia of the merry-go-round,
is the initial angular velocity of the merry-go-round,
is the moment of inertia of the merry-go-round and the child together and
is the final angular velocity.
First, we will find the moment of inertia of the merry-go-round using:
I = 
I = 
I = 359.375 kg*m^2
Where
is the mass and R is the radio of the merry-go-round
Second, we will change the initial angular velocity to rad/s as:
W = 0.520*2
rad/s
W = 3.2672 rad/s
Third, we will find the moment of inertia of both after the collision:



Finally we replace all the data:

Solving for
:

Answer:
t = 5 hr
Explanation:
Let kali moves toward east with velocity= V₁= 40 km/ h
Mat moves toward west with velocity = V₂= 50 km/hr
As Klai left one hour earlier = t₁= 1 hr
distance traveled in 1st hour = s₁ = v * t = 40 * 1 = 40 km
Remaining distance = 400 - 40 = 360 km
As they move in the opposite directions:
Relative speed= 40 + 50 = 90 km/ h
s = v * t
⇒ t = s / v
⇒ t₂ = 360 / 90
⇒ t₂ = 4 hr
Total time = t = t₁ + t₂
t = 1 hr + 4 hr
t = 5 hr
Answer:
a.3.87s
b.127.36m
c.18.4m
Step by step explanation:
Refer to the diagram
ITS C
This element tends to lose 2 electrons to become a 2+ ion, is the correct statement regarding the element calcium. Calcium has 2 electrons in its outer shell and it is easier to lose them than it is to gain enough to become stable. When stable it has 2 more protons than electrons forming a 2+ ion.