Answer:
one at the edge
Explanation:
The relation between the linear velocity and the angular velocity is given by
v = r x ω
Where, v be the linear velocity, ω be the angular velocity and r be the radius of the circular path.
As the angular velocity is constant, thus, the linear velocity depends on the radius of circular path.
So, the horse which is near to the edge has maximum radius of circular path in which it is rotating. So, the horse which is at the edge of the merry go round has maximum linear speed.
Answer:
just put the molecules and atoms where they belong
Explanation:
Answer:
1.029
Explanation:
1.0090 can also be looked at as "1.009"
0.02 can also be looked at as "0.020"
I think of it as 20+9 which is 29. There for your answer should be 1.029. There are no measurement rules applying to this equation since they are both in centimeters. So you don't have to convert anything.
Angular velocity of the rotating tires can be calculated using the formula,
v=ω×r
Here, v is the velocity of the tires = 32 m/s
r is the radius of the tires= 0.42 m
ω is the angular velocity
Substituting the values we get,
32=ω×0.42
ω= 32/0.42 = 76.19 rad/s
= 76.19×
revolution per min
=728 rpm
Angular velocity of the rotating tires is 76.19 rad/s or 728 rpm.