Answer:
300 SUVs were sold.
210 Passenger cars were sold.
Step-by-step explanation:
Let S denote the amount of SUVs sold and let P denote the amount of passenger cars sold.
The total amount of vehicles sold was 510, so:

90 more SUVs were sold than passenger cars. In other words:

We know have a system of equations. We can solve it buy substituting the second equation into the first. Thus:

Combine like terms:

Subtract 90 from both sides:

Divide both sides by 2:

So, the 210 passenger cars were sold.
This means that 210+90=300 SUVs were sold.
And we're done!
Answer:
To solve the first inequality, you need to subtract 6 from both sides of the inequality, to obtain 4n≤12. This can then be cancelled down to n≤3 by dividing both sides by 4. To solve the second inequality, we first need to eliminate the fraction by multiplying both sides of the inequality by the denominator, obtaining 5n>n^2+4. Since this inequality involves a quadratic expression, we need to convert it into the form of an^2+bn+c<0 before attempting to solve it. In this case, we subtract 5n from both sides of the inequality to obtain n^2-5n+4<0. The next step is to factorise this inequality. To factorise we must find two numbers that can be added to obtain -5 and that can be multiplied to obtain 4. Quick mental mathematics will tell you that these two numbers are -4 and -1 (for inequalities that are more difficult to factorise mentally, you can just use the quadratic equation that can be found in your data booklet) so we can write the inequality as (n-4)(n-1)<0. For inequalities where the co-efficient of n^2 is positive and the the inequality is <0, the range of n must be between the two values of n whereby the factorised expresion equals zero, which are n=1 and n=4. Therefore, the solution is 1<n<4 and we can check this by substituting in n=3, which satisfies the inequality since (3-4)(3-1)=-2<0. Since n is an integer, the expressions n≤3 and n<4 are the same. Therefore, we can write the final answer as either 1<n<4, or n>1 and n≤3.
<h2>
Answer:</h2>

<h2>
Step-by-step explanation:</h2>
We will use the Gaussian elimination method to solve this problem. To do so, let's follow the following steps:
Step 1: Let's multiply first equation by −2. Next, add the result to the second equation. So:

Step 2: Let's multiply first equation by −1. Next, add the result to the third equation. Thus:

Step 3: Let's multiply second equation by −35, Next, add the result to the third equation. Therefore:

Step 4: solve for z, then for y, then for x:


By substituting
into the first equation, we get the
. So:

Answer:

Step-by-step explanation:
Maximum Value → Parabola opens downward [<em>−A</em>]
Minimum Value → Parabola opens upward [<em>A</em>]
<em>See graph above</em>
I am joyous to assist you anytime.