When conducting and experiment you want to have a notebook and something to write down notes with so you can keep everything organized and proper, and to not miss anything in the experiment. Also you want to have everything in order of the way it should be in.
I hope you found this helpful!
There are two torques t1 and t2 on the beam due to the weights, one torque t3 due to the weight of the beam, and one torque t4 due to the string.
You need to figure out t4 to know the tension in the string.
Since the whole thing is not moving t1 + t2 + t3 = t4.
torque t = r * F * sinФ = distance from axis of rotation * force * sin (∡ between r and F)
t1 =3.2 * 44g
t2 = 7 * 49g
t3 = 3.5 * 24g
t4 = t1 + t2 + t3 = 5570,118
The t4 also is given by:
t4 = r * T * sin Ф
r = 7
Ф = 32°
T: tension in the string
T = t4 / (r * sinФ)
T = t4 / (7 * sin(32°))
T = 1501,6 N
The final temperature is 83 K.
<u>Explanation</u>:
For an adiabatic process,


Given:-



(the gas is monoatomic)

T = 275
0.30
T = 83 K.
Answer: Could you please add the answer choices.
Explanation:
Thank you :)
Answer:
54.6°
Explanation:
From law of reflection i=r.
So, construct the reflected ray at 55.7°degrees from the normal and let it fall on the other mirror.
Now draw the second normal at the point of incidence and again measure the angle of incidence, and draw the angle of reflection.
If you consider triangle AOB, one angle is ∠AOB=90°
and ∠OAB is 54.6°
From angle sum property third angle ie ∠ABO=180°-90°-54.6°=35.4°
So, the second incident angle will be 54.6°
Hence, the second reflected angle will be 54.6 degrees.