Answer:
Part 1) The length of the diagonal of the outside square is 9.9 units
Part 2) The length of the diagonal of the inside square is 7.1 units
Step-by-step explanation:
step 1
Find the length of the outside square
Let
x -----> the length of the outside square
c ----> the length of the inside square
we know that
![x=a+b=4+3=7\ units](https://tex.z-dn.net/?f=x%3Da%2Bb%3D4%2B3%3D7%5C%20units)
step 2
Find the length of the inside square
Applying the Pythagoras Theorem
![c^{2}= a^{2}+b^{2}](https://tex.z-dn.net/?f=c%5E%7B2%7D%3D%20a%5E%7B2%7D%2Bb%5E%7B2%7D)
substitute
![c^{2}= 4^{2}+3^{2}](https://tex.z-dn.net/?f=c%5E%7B2%7D%3D%204%5E%7B2%7D%2B3%5E%7B2%7D)
![c^{2}=25](https://tex.z-dn.net/?f=c%5E%7B2%7D%3D25)
![c=5\ units](https://tex.z-dn.net/?f=c%3D5%5C%20units)
step 3
Find the length of the diagonal of the outside square
To find the diagonal Apply the Pythagoras Theorem
Let
D -----> the length of the diagonal of the outside square
![D^{2}= x^{2}+x^{2}](https://tex.z-dn.net/?f=D%5E%7B2%7D%3D%20x%5E%7B2%7D%2Bx%5E%7B2%7D)
![D^{2}= 7^{2}+7^{2}](https://tex.z-dn.net/?f=D%5E%7B2%7D%3D%207%5E%7B2%7D%2B7%5E%7B2%7D)
![D^{2}=98](https://tex.z-dn.net/?f=D%5E%7B2%7D%3D98)
![D=9.9\ units](https://tex.z-dn.net/?f=D%3D9.9%5C%20units)
step 4
Find the length of the diagonal of the inside square
To find the diagonal Apply the Pythagoras Theorem
Let
d -----> the length of the diagonal of the inside square
![d^{2}= c^{2}+c^{2}](https://tex.z-dn.net/?f=d%5E%7B2%7D%3D%20c%5E%7B2%7D%2Bc%5E%7B2%7D)
![d^{2}= 5^{2}+5^{2}](https://tex.z-dn.net/?f=d%5E%7B2%7D%3D%205%5E%7B2%7D%2B5%5E%7B2%7D)
![d^{2}=50](https://tex.z-dn.net/?f=d%5E%7B2%7D%3D50)
![d=7.1\ units](https://tex.z-dn.net/?f=d%3D7.1%5C%20units)