I do not see any possible answers that you have posted. But a good idea would be that it might have fossils, water currents, mud cracks, usually form in shallow seas. Hope this helps!
If 50.75 g of a gas occupies 10.0 L at STP, 129.3 g of the gas will occupy 25.48 L at STP.
<h3>How to calculate volume?</h3>
The volume of a gas at STP can be calculated using the direct proportion method.
According to this question, 50.75 g of a gas occupies 10.0 L at STP, then 129.3g of the same gas will occupy the following:
= 129.3 × 10/50.75
= 25.48L
Therefore, if 50.75 g of a gas occupies 10.0 L at STP, 129.3 g of the gas will occupy 25.48 L at STP.
Learn more about volume at: brainly.com/question/12357202
#SPJ1
This question requires the knowledge of density.
The density of ethyl alcohol = 789 kg m⁻³
The density of water = 1000 kg m⁻³
Density = Mass / Volume
By applying ethyl alcohol,
789 kg m⁻³ = Mass / 0.9 m³
Mass = 710.1 kg
hence the mass of 0.9 m³ ethyl alcohol is 710.1 kg.
Then by applying water,
1000 kg m⁻³ = 710.1 kg / Volume
Volume = 0.7101 m³
= 0.7 m³
hence the equal water volume is 0.7 m³
44. (a) N2O3 (b) SF4 (c) AlCl3 (d) Li2CO3
46. H Br
δ+ δ−
48. The metallic potassium atoms lose one electron and form +1 cations,
and the nonmetallic fluorine atoms gain one electron and form –1 anions.
K → K+
+ e–
19p/19e–
19p/18e–
F + e–
→ F–
9p/9e–
9p/10e–
The ionic bonds are the attractions between K+
cations and F–
anions.
50. See Figure 3.6.
52. (a) covalent…nonmetal-nonmetal (b) ionic…metal-nonmetal
54. (a) all nonmetallic atoms - molecular (b) metal-nonmetal - ionic
56. (a) 7 (b) 4
58. Each of the following answers is based on the assumption that nonmetallic
atoms tend to form covalent bonds in order to get an octet (8) of
electrons around each atom, like the very stable noble gases (other than
helium). Covalent bonds (represented by lines in Lewis structures) and lone
pairs each contribute two electrons to the octet.
(a) oxygen, O
If oxygen atoms form two covalent bonds, they will have an octet of electrons
around them. Water is an example:
H O H
(b) fluorine, F
If fluorine atoms form one covalent bond, they will have an octet of electrons
around them. Hydrogen fluoride, HF, is an example:
H F
(c) carbon, C
If carbon atoms form four covalent bonds, they will have an octet of electrons
around them. Methane, CH4, is an example:
H H
H
H
C
(d) phosphorus, P
If phosphorus atoms form three covalent bonds, they will have an octet