Answer:
C. Trp D. Phe E. Tyr
Explanation:
The concentration of a protein has a direct relation with absorbance of the protein in a UV spectrophotometer. The formula which relates concentration with absorbance is described as under:
A = ∈ x c x l
where, A = Absorbance
∈ = Molar extinction co-efficient
c = Concentration of absorbing species i.e. protein
l = Path length of light
Tryptophan (Trp), phenylalanine (Phe ) and tyrosine (Tyr) are three aromatic amino acids which are used to measure protein concentration by UV. It is mainly because of tryptophan (Trp), protein absorbs at 280 nm which gives us an idea of protein concentration during UV spectroscopy.
The table depicting the wavelength at which these amino acids absorb and their respective molar extinction coefficient is as under:
Amino acid Wavelength Molar extinction co-efficient (∈)
Tryptophan 282 nm 5690
Tyrosine 274 nm 1280
Phenylalanine 257 nm 570
In view of table above, we can easily see that Molar extinction co-efficient (∈) of Tryptophan is highest amongst all these 3 amino acids that is why it dominates while measuring concentration.
Explanation:
The given data is as follows.
= 100 mm Hg or
= 0.13157 atm
=
= (1080 + 273) K = 1357 K
=
= (1220 + 273) K = 1493 K
= 600 mm Hg or
= 0.7895 atm
R = 8.314 J/K mol
According to Clasius-Clapeyron equation,

![log(\frac{0.7895}{0.13157}) = \frac{\Delta H_{vap}}{2.303 \times 8.314 J/mol K}[\frac{1}{1357 K} - \frac{1}{1493 K}]](https://tex.z-dn.net/?f=log%28%5Cfrac%7B0.7895%7D%7B0.13157%7D%29%20%3D%20%5Cfrac%7B%5CDelta%20H_%7Bvap%7D%7D%7B2.303%20%5Ctimes%208.314%20J%2Fmol%20K%7D%5B%5Cfrac%7B1%7D%7B1357%20K%7D%20-%20%5Cfrac%7B1%7D%7B1493%20K%7D%5D)
![log (6) = \frac{\Delta H_{vap}}{19.147}[\frac{(1493 - 1357) K}{1493 K \times 1357 K}]](https://tex.z-dn.net/?f=log%20%286%29%20%3D%20%5Cfrac%7B%5CDelta%20H_%7Bvap%7D%7D%7B19.147%7D%5B%5Cfrac%7B%281493%20-%201357%29%20K%7D%7B1493%20K%20%5Ctimes%201357%20K%7D%5D)
0.77815 = 
=
J/mol
= 
= 221.9 kJ/mol
Thus, we can conclude that molar heat of vaporization of substance X is 221.9 kJ/mol.
The answer is Option C (Divergent Plate Boundary)
Mapping efforts have shown that mid-ocean ridges<span> are discontinuous structures that cut at </span>right angles<span> to its length at various transform faults. They typically </span><span>demarcate the </span>boundary <span>between two tectonic plates, and are therefore called </span>divergent<span> plate </span>boundaries.
Answer:
Decay-the breakdown of dead plants..
Earth- thermal energy comes from deep inside...
Fires- these consume feul...
Explanation: