Answer:
15
Step-by-step explanation:
4x+y=8 so the answer is 15?
There are many systems of equation that will satisfy the requirement for Part A.
an example is y≤(1/4)x-3 and y≥(-1/2)x-6
y≥(-1/2)x-6 goes through the point (0,-6) and (-2, -5), the shaded area is above the line. all the points fall in the shaded area, but
y≤(1/4)x-3 goes through the points (0,-3) and (4,-2), the shaded area is below the line, only A and E are in the shaded area.
only A and E satisfy both inequality, in the overlapping shaded area.
Part B. to verify, put the coordinates of A (-3,-4) and E(5,-4) in both inequalities to see if they will make the inequalities true.
for y≤(1/4)x-3: -4≤(1/4)(-3)-3
-4≤-3&3/4 This is valid.
For y≥(-1/2)x-6: -4≥(-1/2)(-3)-6
-4≥-4&1/3 this is valid as well. So Yes, A satisfies both inequalities.
Do the same for point E (5,-4)
Part C: the line y<-2x+4 is a dotted line going through (0,4) and (-2,0)
the shaded area is below the line
farms A, B, and D are in this shaded area.
Answer:
A
Step-by-step explanation:
Answer:
232.045
Step-by-step explanation:
217 + 253 + 214 + 247 + 217 + 253 + 232 + 246 + 223 + 227 + 229 + 247 + 206 + 241 + 239 + 223 + 222 + 216 + 252 + 209 + 236 + 256 = 5105
5105 / 22 = 232.045454545