Answer:
Option A. It has stayed the same.
Explanation:
To answer the question given above, we assumed:
Initial volume (V₁) = V
Initial temperature (T₁) = T
Initial pressure (P₁) = P
From the question given above, the following data were:
Final volume (V₂) = 2V
Final temperature (T₂) = 2T
Final pressure (P₂) =?
The final pressure of the gas can be obtained as follow:
P₁V₁/T₁ = P₂V₂/T₂
PV/T = P₂ × 2V / 2T
Cross multiply
P₂ × 2V × T = PV × 2T
Divide both side by 2V × T
P₂ = PV × 2T / 2V × T
P₂ = P
Thus, the final pressure is the same as the initial pressure.
Option A gives the correct answer to the question.
Answer:
n = 0.0022 mol
Explanation:
Moles is denoted by given mass divided by the molar mass ,
Hence ,
n = w / m
n = moles ,
w = given mass ,
m = molar mass .
From the information of the question ,
w = 0.108 g
As we known ,
The molar mass of titanium = 47.867 g / mol
The mole of titanium can be caused by using the above relation , i.e. ,
n = w / m
n = 0.108 g / 47.867 g / mol
n = 0.0022 mol
The correct answer would be the second option. It would would need 2 moles of electrons to reduce one mole of bromine gas into two moles of the bromide ions. This is a reduction reaction. It would be written as:
Br2 = 2Br- + 2e-
Answer: 151 kJ
Explanation:
To calculate the moles :

It is given that:
0.267 moles of
absorb energy = 40.3 kJ
Thus 1 mole of
absorb energy =
Thus the value of
for the chemical equation given is 151 kJ