To find the empirical formula you would first need to find the moles of each element:
58.8g/ 12.0g = 4.9 mol C
9.9g/ 1.0g = 9.9 mol H
31.4g/ 16.0g = 1.96 O
Then you divide by the smallest number of moles of each:
4.9/1.96 = 2.5
9.9/1.96 = 6
1.96/1.96 = 1
Since there is 2.5, you find the least number that makes each moles a whole number which is 2.
So the empirical formula is C5H12O2.
Answer:
See explanation
Explanation:
The reactivity of metals has a lot to do with their position in the electrochemical series. However, it is also known that metallic character decreases across the period. This implies that as we move from left to right along the periodic table. Sodium, magnesium, aluminum and silicon continues to decrease in metallic character. As a matter of fact, silicon is a metalloid and not a pure metal.
Sodium reacts with cold water to give a vigorous reaction,magnesium and aluminium reacts with steam at red heat.
Silicon does not react with water, even as steam, under normal conditions.
Answer:
1) The power of Niagara Falls is 1.176 × 10⁹ W
2) The number of 15 W LED light bulbs it could power is 78.4 × 10⁶ light bulbs
Explanation:
1) The Niagara falls water mass flow rate = 2,400,000 kg/s
The height of the fall = 50 meters
The gravitational potential energy = Mass (kg) × height (m) × gravity (9.8 m/s²)
The power = The energy converted per second = Mass flow rate (kg/s) × height (m) × gravity (9.8 m/s²)
Therefore;
The power of Niagara Falls= 2,400,000 kg/s × 50 m ×9.8 m/s²= 1.176 × 10⁹ W
The power of Niagara Falls = 1.176 × 10⁹ W
2) The number, n, of 15 W LED light bulbs it could power is given by the relation;
n × 15 W = 1.176 × 10⁹ W
∴ n = 1.176 × 10⁹ W/(15 W) = 78.4 × 10⁶ light bulbs
The number of 15 W LED light bulbs it could power = 78.4 × 10⁶ light bulbs.
I don’t get it. What is the question asking?