Gravitational potential energy is energy an object possesses because of its position in a gravitational field. The most common use of gravitational potential energy is for an object near the surface of the Earth where the gravitational acceleration can be assumed to be constant at about 9.8 m/s2.
Answer:
It will be more than deta t
Explanation:
Because
deta t' = န deta t
But န= 1/√ (1 - v²/c²
So the observers in all the initial frames will be more than deta t
Answer: The height (position) of the ball and the acceleration due gravity
Explanation:
In this case we are taking about gravitational potential energy, which is the energy a body or object possesses, due to its position in a gravitational field. In this sense, this energy depends on the relative height of an object with respect to some point of reference and associated with the gravitational force.
In the case of the Earth, in which the gravitational field is considered constant, the gravitational potential energy
will be:
Where:
is the mass of the ball
is the acceleration due gravity (assuming the ball is on the Earth surface)
is the height (position) of the ball respect to a given point
Note the value of the gravitational potential energy is directly proportional to the height.
Answer:
Mix
Explanation:
A battery has two electrodes, at one end it has the anode and the other end has the cathode. Electrons travel through the circuit from the anode (negative) to the cathode (positive), and this is the driving force that provides electricity to flow through circuits.
The anode needs to have a low electron affinity because it needs to readily release electrons, and the cathode needs to have a high electron affinity because it needs to readily accept electrons.