1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nikdorinn [45]
3 years ago
14

2. What is the kinetic energy of a 7.26 kg bowling ball that is rolling at a speed of 2 m/s?

Physics
2 answers:
telo118 [61]3 years ago
6 0

Kinetic energy is the energy possessed by an object when that object is moving in space. The higher the mass of an object or higher the speed of an object the higher the kinetic energy will be.

So to calculate the Kinetic Energy we can use the following formula

K.E=(1/2)*m*v^2

Inserting the values in formula gives:

K.E=1/2*7.26*2^2

14.52J

This is the final answer which gives the kinetic energy of the ball.

Dimas [21]3 years ago
3 0

Answer:

The kinetic energy of bowling ball is 14.52J

Explanation:

Given that the formula of kinetic energy is (1/2)mv². Then substitute the following value into the formula:

m = 7.26kg

v = 2m/s

k.e = (1/2)×7.26×2²

= 14.52J

You might be interested in
HELP!! ILL GIVE BRAINLIEST As we've learned so far, the popular model of the solar system shifted over
Mademuasel [1]

Answer:

geotric earth simulator I think ya I have no idea

4 0
3 years ago
A student is bicycling north along Main Street to school. Another student is timing the bicycling student in order to determine
MatroZZZ [7]

The average velocity is -4.17 m/s

Explanation:

The average velocity of a body is given by:

v=\frac{d}{t}

where

d is the displacement of the body

t is the time elapsed

For the student in this problem, we have:

Initial position: x_i = 450 m

Final position: x_f = 200 m

So the displacement is

d=x_f -x_i = 200 - 450 = -250 m

The time elapsed is

t = 60 s

Therefore, the average velocity is

v=\frac{-250}{60}=-4.17 m/s

Where the negative sign means the student is moving towards the origin.

Learn more about average speed and velocity:

brainly.com/question/8893949

brainly.com/question/5063905

#LearnwithBrainly

8 0
4 years ago
Outside a spherically symmetric charge distribution of net charge Q, Gauss's law can be used to show that the electric field at
Sergio039 [100]

Answer:

Q at the center of the distribution.

Explanation:

  • The Gauss's law is the law that relates to the distribution of electrical charges to the resulting electrical field. It states that a flux of electricity outside the arabatory closed surface is proportional to the electricitical harg enclosed by the surface.
3 0
3 years ago
What is the kinetic energy k of an electron with momentum 1.05×10−24 kilogram meters per second?
fiasKO [112]
Momentum = mv
where m is the mass of an electron and v is the velocity of the electron.

v = momentum ÷ m
   = (1.05×10∧-24)÷(9.1×10∧-31) = 1,153,846.154 m/s

kinetic energy = (mv∧2)÷2
                       = (9.1×10∧-31 × 1,153,846.154∧2) ÷2
                      = (1.21154×10∧-18) ÷ 2
                      = 6.05769×10∧-19 J
4 0
4 years ago
Read 2 more answers
Particle q₁ has a charge of 2.7 μC and a velocity of 773 m/s. If it experiences a magnetic force of 5.75 × 10⁻³ N, what is the s
Ne4ueva [31]
The intensity of the magnetic force F experienced by a charge q moving with speed v in a magnetic field of intensity B is equal to
F=qvB \sin \theta
where \theta is the angle between the directions of v and B.

1) Re-arranging the previous formula, we can calculate the value of the magnetic field intensity. The charge is q=2.7 \mu C=2.7 \cdot 10^{-6}C. In this case, v and B are perpendicular, so \theta=90^{\circ}, therefore we have:
B= \frac{F}{qv \sin \theta} = \frac{5.75 \cdot 10^{-3}N}{(2.7 \cdot 10^{-6}C)(773m/s)\sin 90^{\circ}}=2.8 T

2) In this second case, the angle between v and B is \theta=55^{\circ}. The charge is now q=42.0 \mu C=42.0 \cdot 10^{-6}C, and the magnetic field is the one we found in the previous part, B=2.8 T, so we can find the intensity of the force experienced by this second charge:
F=qvB \sin \theta=(42\cdot 10^{-6}C)(1.21 \cdot 10^3 m/s)(2.8 T)(\sin 55^{\circ})=0.12 N
5 0
3 years ago
Read 2 more answers
Other questions:
  • The seatbelt across your chest should have about ________ fist width of slack.
    5·1 answer
  • A shopper pushes a grocery cart 41.9 m on level ground, against a 44.5 N frictional force. The cart has a mass of 16.3 kg. He pu
    10·1 answer
  • Light traveling through air strikes the surface of the four different materials shown. Which material reflects light but does no
    13·2 answers
  • Will get Brainlest 5 star and heart looking for someone who knows 7 grd science flvs work dm and friend
    5·1 answer
  • How much work is required to move an electron
    11·1 answer
  • Which best describes a force?
    10·2 answers
  • About 50 000 years ago, in an area located outside Flagstaff, Arizona, a giant
    11·1 answer
  • An astronaut is traveling in a space vehicle that has a speed of 0.480c relative to Earth. The astronaut measures his pulse rate
    14·1 answer
  • A potato is launched from the ground at an 73 degree angle with a velocity of 48 m/s.
    9·1 answer
  • . A girl of mass 35 kg and boy of mass 25 kg are connected by a light rope. They move horizontally in a skating rink. A second r
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!