Answer:
T= 2p√m/k
Explanation:
This is because the period of oscillation of the mass of spring system is directly proportional to the square root of the mass and it is inversely proportional to the square root of the spring constant.
The period of a mass on a spring is given by the equation
T=2π√m/k.
Where T is the period,
M is mass
K is spring constant.
An increase in mass in a spring increases the period of oscillation and decrease in mass decrease period of oscillation.
Answer:
It's had to be a Nuclear change since by nuclear fusion we can convert lead to Gold.
Therefore <u>Option B. Nuclear Change</u> is Answer.
By : Modern Einstein
Answer:
Assume that
;
.
Density of the disk: approximately
.
Weight of the disk: approximately
.
Buoyant force on the disk if it is submerged under water: approximately
.
The disk will sink when placed in water.
Explanation:
Convert the dimensions of this disk to SI units:
- Diameter:
. - Thickness
.
The radius of a circle is 1/2 its diameter:
.
Volume of this disk:
.
Density of this disk:
.
indicates that the disk will sink when placed in water.
Weight of the object:
.
The buoyant force on an object in water is equal to the weight of water that this object displaces. When this disk is submerged under water, it will displace approximately
of water. The buoyant force on the disk will be:
.
The size of this disk's weight is greater than the size of the buoyant force on it when submerged under water. As a result, the disk will sink when placed in water.
You have to find an equation that would relate the two motions of the locomotives. When they meet at a certain point after being 8.5 km apart initially, then that means that their individual distances traveled is equal to 8.5 The solution is as follows:
Distance = speed*time
Total distace = 8.5 = 155t + 155t
Solving for t,
t = 0.027 hour or 98.71 seconds
Metals
3/4 of the periodic table
Good conductors of heat and electricity
Malleable
Nonmetals
1/4 of the periodic table
Bad conductors of heat and electricity
Not bendable