Answer: Molar mass of CO2 is 44 gram/mol. So,the mass of 1 mole or 6.02*10^23 molecules of CO2 is 44 grams
Explanation:
The molar mass of the compound:
If the solution has an osmotic pressure of 8.44 torr, then the molar mass of the unknown non-electrolyte is 223.14 g.
What is osmosis?
- Osmosis is defined as the flow of solvent molecules through semi-permeable membrane.
- Osmotic pressure is the pressure applied to stop the flow of solvent molecules.
- It is a colligative property that means osmotic pressure depends on the number of solute particles .
Therefore,
π
( for electrolytes)
Where, π= Osmotic pressure
i = Van 't Hoff factor
n= moles
R= Gaseous constant = 62.363577 L torr 
T= Temperature
V= Volume of solution
Given:
T= 298K
V= 150 mL= 0.150 L
Given mass of unknown electrolyte= 15.2 mg = 15.2 x
g
Osmotic pressure= 8.44 torr
Molar mass= ?
For non-electrolytes:
πV = n RT
πV=
RT
Calculations:
Putting the given values in the formula:
8.44 x 0.150 =15.2 x
/ M x 62.36 x 298
1.266 = 282.5/M
M = 282.5/1.266
M = 223.14 g
Therefore,
The molar mass of the unknown non-electrolyte is 223.14g.
Learn more about Osmotic pressure here,
brainly.com/question/13680877
#SPJ4
The density of the gas is 1.45 g/L.
The mass of the gas is 0.0707 g.
The volume of the gas is 48.9 mL.
Density = mass/volume = 0.0707 g/48.9 mL = 1.45 × 10⁻³ g/mL = 1.45 g/L
To solve this we assume that the gas is an ideal
gas. Then, we can use the ideal gas equation which is expressed as PV = nRT. At
a constant temperature and number of moles of the gas the product of PV is
equal to some constant. At another set of condition of temperature, the
constant is still the same. Calculations are as follows:
P1V1 =P2V2
V2 = P1 x V1 / P2
<span>V2 = 153 x 4 / 203</span>
V2 = 3 L
Nothing is less dense than gas. gas is the least dense form of matter.