Answer:
thermal; coolant
Explanation:
A refrigerator transfers thermal energy from the cool air inside the refrigerator to the warm air in the kitchen. I hope this helps! ^-^
Answer: 17.78g
Explanation:
Assume there is no heat exchange with the environment, then the amount of heat taken by the steel rod, Q(s), is equal to the amount of heat lost by the water, Q(w), but with opposite sign.
Q(s) = -Q(w)
Remember, Q = mc(ΔΦ)
Where Q = amount of heat
m = mass of steel
c = specific heat capacity of steel
ΔΦ = Initial temperature T1 - Final temperature T2
Q = mc(T1-T2)
Recall, Q(s) = -Q(w). Then,
m(s)*c(s)*(T1s - T2s) = - m(w)*c(w)*(T1w - T2w)
Substituting each values
Note: m(w) = volume of water*density = 75mL*1g/mL = 75g
m(s)*0.452*(21.5-2) = -75*4.18*(21.5-22)
m(s)*8.814 = 156.75
m(s) = 156.75/8.814
m(s) = 17.78g
Therefore, the mass of steel is 17.78g
Answer:D
Explanation:
Decomposers decompose food and return it to the environment through the soil
Organic compounds essential to human functioning include carbohydrates, lipids, proteins, and nucleotides. These compounds are said to be organic because they contain both carbon and hydrogen
Actually, Henry's Law is an empirical value. It means that it was not obtained out of raw calculations or correlations. This was gathered from experimental results. Hence, you can search its data. At standard temperature of 25°C (298 K),
k = k°e^[2400(1/T - 1/T°)], where k° = 29.4 L·atm/mol
Substituting the values so that T would be in 20°C or 293 K,
k = (29.4 L·atm/mol)e^[2400(1/293 - 1/298)]
k = 33.7 L·atm/mol