It would be 2800*0.04*4. Your final answer will be $448
Answer:
How many drinks should be sold to get a maximal profit? 468
Sales of the first one = 345 cups
Sales of the second one = 123 cups
Step-by-step explanation:
maximize 1.2F + 0.7S
where:
F = first type of drink
S = second type of drink
constraints:
sugar ⇒ 3F + 10S ≤ 3000
juice ⇒ 9F + 4S ≤ 3600
coffee ⇒ 4F + 5S ≤ 2000
using solver the maximum profit is $500.10
and the optimal solution is 345F + 123S
Wx+yz=bc
minus wx on both sides
yz=bc-wx
dividing 'y' on both sides
Hence,
z=(bc-wx)/y
Here is what you need.
Hope it helped
Answer:
36.45
Step-by-step explanation:
5.50 × 3 = 16.5
16.5 + 19.95 = 36.45
sorry if wrong.
hope it helps.
Answer:
Plot the points in black and connect them.
Plot the point in blue and count up 3 and to the right 1. Plot and connect the points.
Step-by-step explanation:
Using your cursor/mouse, you will first choose the color black. Then you will plot the points given to you (2,2) and (5,8) by first finding the x-coordinate of (x,y). Start at 2 on the x-axis. Follow the grid line up two units so you will also be at the 2 on the y-axis. Plot or draw a dot/circle on this grid line. Go back to the x-axis and start again at 5 on the x-axis. Follow the grid line up eight units so you will also be at the 8 on the y-axis. Plot or draw a dot/circle on this grid line. Connect the dots for your line.
Using your cursor/mouse, you will choose the color blue. Then you will plot the point given to you (10,5) by first finding the x-coordinate of (x,y). Start at 10 on the x-axis. Follow the grid line up five units so you will also be at the 5 on the y-axis. Plot or draw a dot/circle on this grid line. Instead of plotting another point. This time you will count from the blue point up three units and over to the right one. Mark this grid line as a point. Now connect them.