Answer:
The light bends away from the normal
Explanation:
We can solve the problem by using Snell's law:

where:
is the index of refraction of the first medium
is the index of refraction of the second medium
is the angle of incidence (angle between the incoming ray and the normal to the interface)
is the angle of refraction (angle between the outcoming ray and the normal to the interface)
We can rearrange the equation as

In this problem, light travels from an optically denser medium to an optically rarer medium, so

Therefore, the term
is greater than 1, so

which means that the angle of refraction is greater than the angle of incidence, and so the light will bend away from the normal.
Answer:

Explanation:
From the question we are told that:
Frictional force 
Coefficient of kinetic friction 
Generally the equation for Normal for is mathematically given by

Therefore


Answer:
All of the above are true.
Explanation:
(a). true
whenever charge particle move back and froth from its mean position then it will produce oscillating electric and magnetic fields, . so an em wave can be obtain by accelerating charge
(b). true
the electric field and the magnetic field have vibrations in the perpendicular direction along the motion of the wave so electromagnetic wave is a transverse wave. therefore, the EM wave is a Transverse wave
(c) true .
The Electromagnetic wave consists of the two mutually perpendicular electric and magnetic fields and also both fields are perpendicular to the direction of propagation of the wave.
(d) true .
An electromagnetic wave carry energy through vacuum with a speed of
so , all of the above are true.
Answer:
E. Student 1 is correct, because as θ is increased, h is the same.
Explanation:
Here we have the object of a certain mass falling under gravity so the force acting on the it will depend on mass of the object and the acceleration due to gravity.
Mathematically:

As we know that the work done is evaluated as the force applied on a body and the displacement of the body in the direction of the force.
And for work we have:

where:
displacement of the object
angle between the force and displacement vectors
Given that the height of the object is same in each trail of falling object under the gravity be it a free-fall or the incline plane.
- In case of free-fall the angle between the force is and the displacement is zero.
- In case when the body moves along the inclined plane the force applied by the gravity is same because it depends upon the mass of the object. And the net displacement in the direction of the gravitational force is the height of the object which is constant in both the cases.
So, the work done by the gravitational force is same in the two cases.