Answer: 0.85 meters (with and without sigfigs)
Explanation: To find the wavelength, you just have to switch around the equation for wave speed: v (wave speed) = λ (wavelength)*f (frequency) so λ (wavelength) = v (wave speed)/f (frequency). You don't have the wave speed but you can calculate it. Since wave speed is measured in meters/second or m/s, you just have to divide the amount of meters you were given by the amount of seconds. You will get 340 m/s. Next, you have to plug the values into the equation: λ (wavelength) = 340 m/s (wave speed)/400 Hz (frequency). The answer is 0.85 meters (seconds cancel) and has the correct number of significant figures.
If a golf ball and Bowling ball are rolling at the same speed, the bowling ball would have greater momentum.
Answer:
most light waves are scattered or are either reflected
Explanation:
the light waves bounce after hitting the mirror.
Answer:
Explanation:
I guess we are ASSUMING that this is a rear wheel drive car as a front wheel drive car will never get the front wheel normal force to zero
If we consider it as a statics problem and choose our moment center carefully...say 0.7 m above the rear wheel to ground contact point.
Call the traction force at the rear wheels F
The normal force on the front wheels will be zero, so no moment generated by the front wheels.
Summing moments about our chosen point to zero
1600(9.8)[2.6 / 2] - F[0.7] = 0
F = 291,200
this force will create an acceleration of
a = F/m
a = 291200/1600
a = 182 m/s²
which is about 18.6 times gravity acceleration