Answer:
The length of segment QM' = 6
Step-by-step explanation:
Given:
Q is the center of dilation
Pre-image (original image) = segment LM
New image = segment L'M'
The length of LQ = 4
The length of QM = 3
The length of LL' = 4
The original image was dilated with scale factor = 2
QM' = ?
To determine segment QM', first we would draw the diagram obtained from the given information.
Find attached the diagram
When a figure is dilated, we would have similar shape in thus cars similar triangles.
Segment L'M' = scale factor × length of LM
Let LM = x
L'M' = 2x
Using similar triangles theorem, ratio of their corresponding sides are equal.
QM/LM = QM'/L'M'
3/x = QM'/2x
6x = QM' × x
Q'M' = 6
The length of segment QM' = 6
Answer:
Pyramids are triangular in shape with a sided shape, whereas cones have circular bases that merely adjoin at a point.
Step-by-step explanation:
Answer:
Let x = the third side
In a triangle, the sum of any 2 sides must be larger than the third side.
I believe this is called the triangle inequality theorem.
We can construct 3 inequalities to obtain the range of values for the third side.
(Inequality #1) 12 + 4 > x
16 > x
(Inequality#2) 12 + x > 4
x > -8 (we can discard this ... we know all sides will be positive)
(Inequality #3) 4 + x > 12
x > 8
So when we combine these together,
8 < x < 16
X (the third side) must be a number between 8 and 16. but not including 8 and 16
12.42
12°+.42(60)
12°25.2'
12°25'+.2(60)
12°25'12"
Answer:
c>16
Step-by-step explanation:
c-12>4
c> 4+12
c> 16