0.75 is greater the 0.0075
The number of bars which can be cut for the 1" X 1" and 2" X 2" square bars are; 117 and 29 units respectively.
<h3>How many bars can be cut from the pan in each case?</h3>
The total area of the given pan can be evaluated as follows;
Area = length × width
= 9 × 13
= 117 square units.
Hence, the number of 1" X 1" bars can be cut which can be cut from the pan;
= 117/(1×1)
= 117 1" X 1" bars.
For the 2" X 2" square bars, we have;
= 117/(2×2);
29 remainder 1 square unit.
Ultimately, one square unit of the pan is wasted for the 2" X 2" square bars.
Read more on area;
brainly.com/question/8294080
#SPJ1
the yearly increase of x% assumes is compounding yearly, so let's use that.

![95000=80000\left(1+\frac{~~ \frac{r}{100}~~}{1}\right)^{1\cdot 5}\implies \cfrac{95000}{80000}=\left( 1+\cfrac{r}{100} \right)^5 \\\\\\ \cfrac{19}{16}=\left( 1+\cfrac{r}{100} \right)^5\implies \sqrt[5]{\cfrac{19}{16}}=1+\cfrac{r}{100}\implies \sqrt[5]{\cfrac{19}{16}}=\cfrac{100+r}{100} \\\\\\ 100\sqrt[5]{\cfrac{19}{16}}=100+r\implies 100\sqrt[5]{\cfrac{19}{16}}-100=r\implies 3.5\approx r](https://tex.z-dn.net/?f=95000%3D80000%5Cleft%281%2B%5Cfrac%7B~~%20%5Cfrac%7Br%7D%7B100%7D~~%7D%7B1%7D%5Cright%29%5E%7B1%5Ccdot%205%7D%5Cimplies%20%5Ccfrac%7B95000%7D%7B80000%7D%3D%5Cleft%28%201%2B%5Ccfrac%7Br%7D%7B100%7D%20%5Cright%29%5E5%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B19%7D%7B16%7D%3D%5Cleft%28%201%2B%5Ccfrac%7Br%7D%7B100%7D%20%5Cright%29%5E5%5Cimplies%20%5Csqrt%5B5%5D%7B%5Ccfrac%7B19%7D%7B16%7D%7D%3D1%2B%5Ccfrac%7Br%7D%7B100%7D%5Cimplies%20%5Csqrt%5B5%5D%7B%5Ccfrac%7B19%7D%7B16%7D%7D%3D%5Ccfrac%7B100%2Br%7D%7B100%7D%20%5C%5C%5C%5C%5C%5C%20100%5Csqrt%5B5%5D%7B%5Ccfrac%7B19%7D%7B16%7D%7D%3D100%2Br%5Cimplies%20100%5Csqrt%5B5%5D%7B%5Ccfrac%7B19%7D%7B16%7D%7D-100%3Dr%5Cimplies%203.5%5Capprox%20r)