LEAD is the element that has this electron configuration
Answer:
c. stays the same, changes
Explanation:
temperature and heat go hand in hand, however while the change of state occurs, the temperature remains the same while the heat increases since the heat input is constant.
That answer is what characteristic you have.
The wt% of KOH = 45%
This implies that there is 45 g of KOH in 100 g of the solution
Density of the solution is given as 1.45 g/ml
Therefore, the volume corresponding to 100 g of the solution is
= 100 g * 1 ml /1.45 g = 68.97 ml = 0.069 L
Now concentration of the concentrated KOH solution is:
Molarity = moles of KOH/vol of solution
= (45 g/56.105 g.mol-1)/0.069 L = 11.6 M
Thus,
Initial KOH concentration M1 = 11.6 M
Initial volume = V1
Final concentration M2 = 1.20 M
Final volume V2 = 250 ml
M1*V1= M2*V2
V1 = M2*V2/M1 = 1.20*250/11.6 = 25.9 ml = 26 ml
Answer:
A water molecule can react with the carbonyl group of an aldehyde or a ketone to form a substance known as a carbonyl hydrate, as shown in the first reaction below. The carbonyl hydrates usually form a very small percentage of the molecules in a sample of a specific aldehyde or ketone.
(Nice profile pic also UwU)