Air is it gas so it fills its container, the balloon, completely.
A heater letting of heat is an example of release of energy. Please comment if you have any questions about my answer.<span />
Answer:
See Explanation
Explanation:
The question is incomplete; as the mixtures are not given.
However, I'll give a general explanation on how to go about it and I'll also give an example.
The percentage of a component in a mixture is calculated as:

Where
E = Amount of element/component
T = Amount of all elements/components
Take for instance:
In 
The amount of all elements is: (i.e formula mass of
)



The amount of calcium is: (i.e formula mass of calcium)



So, the percentage component of calcium is:




The amount of hydrogen is:



So, the percentage component of hydrogen is:




Similarly, for oxygen:
The amount of oxygen is:



So, the percentage component of oxygen is:




Answer:
The rate of disappearance of C₂H₆O = 2.46 mol/min
Explanation:
The equation of the reaction is given below:
2 K₂Cr₂O₇ + 8 H₂SO₄ + 3 C₂H₆O → 2 Cr₂(SO₄)₃ + 2 K₂SO₄ + 11 H₂O
From the equation of the reaction, 3 moles of C₂H₆O is used when 2 moles of Cr₂(SO₄)₃ are produced, therefore, the mole ratio of C₂H₆O to Cr₂(SO₄)₃ is 3:2.
The rate of appearance of Cr₂(SO₄)₃ in that particular moment is given 1.64 mol/min. This would than means that C₂H₆O must be used up at a rate which is approximately equal to their mole ratios. Thus, the rate of of the disappearance of C₂H₆O can be calculated from the mole ratio of Cr₂(SO₄)₃ and C₂H₆O.
Rate of disappearance of C₂H₆O = 1.64 mol/min of Cr₂(SO₄)₃ * 3 moles of C₂H₆O / 2 moles of Cr₂(SO₄)₃
Rate of disappearance of C₂H₆O = 2.46 mol/min of C₂H₆O
Therefore, the rate of disappearance of C₂H₆O = 2.46 mol/min
True, oxygen gas ignites a glowing splint