Answer:
184.6 BTU
Explanation:
The thermal efficiency for a Carnot cycle follows this equation:
η = 1 - T2/T1
Where
η: thermal efficiency
T1: temperature of the heat source
T2: temperature of the heat sink
These temperatures must be in absolute scale:
1000 F = 1460 R
50 F = 510 R
Then
η = 1 - 510/1460 = 0.65
We also know that for any heat engine:
η = L / Q1
Where
L: useful work
Q1: heat taken from the source
Rearranging:
Q1 = L / η
Q1 = 120 / 0.65 = 184.6 BTU
Answer:
It serves as a guarantee that the contractor who wins the bid will honor the terms of the bid after the contract is signed.
Explanation:
A bid bond is a type of construction bond that protects the obligee in a construction bidding process.
A bid bond typically involves three parties:
The obligee; the owner or developer of the construction project under bid. The principal; the bidder or proposed contractor.
The surety; the agency that issues the bid bond to the principal example insurance company or bank.
A bid bond generally serves as a guarantee that the contractor who wins the bid will honor the terms of the bid after the contract is signed.
Answer:
A) 209.12 GPa
B) 105.41 GPa
Explanation:
We are given;
Modulus of elasticity of the metal; E_m = 67 GPa
Modulus of elasticity of the oxide; E_f = 390 GPa
Composition of oxide particles; V_f = 44% = 0.44
A) Formula for upper bound modulus of elasticity is given as;
E = E_m(1 - V_f) + (E_f × V_f)
Plugging in the relevant values gives;
E = (67(1 - 0.44)) + (390 × 0.44)
E = 209.12 GPa
B) Formula for upper bound modulus of elasticity is given as;
E = 1/[(V_f/E_f) + (1 - V_f)/E_m]
Plugging in the relevant values;
E = 1/((0.44/390) + ((1 - 0.44)/67))
E = 105.41 GPa