12 times ten equals one hundred twenty
We are given a function of the bouncing of the ball expressed as f(n) = 9(0.7)n in which n is an integer as the number of times the ball has dropped. 9 represents the initial height of the ball and 0.7 is the percent of which the height is reserved
Answer:
Yes they can all be written in y = mx + b. You just have to move the terms around.
Step-by-step explanation:
y = 2x -3, this is already in slope-intercept form
Now, y - 2 = x + 2: We can add 2 on both sides to cancel out the one on the left side:
y - 2 = x + 2
y - 2 + 2 = x + + 2
y = x + 4 <-- This is in y = mx + b form
Now the last one, 3x = 9 + 3y
We can first divide all terms by 3,
3x = 9 + 3y
/3 /3 /3
x = 3 + y: Then we can subtract 3 from both sides:
x - 3 = 3 + y - 3
x - 3 = y
These are all linear equations because none of the x's have bigger powers than 1. x^2 is a quadratic equation and x^3 is cubic equation.
Common ratio can be found by dividing the 2nd term by the first
r = 48/6
r = 8
an = a1 * r^(n-1)
n = term to find = 8
a1 = first number = 6
r = common ratio = 8
now we sub
a(8) = 6 * 8^(8-1)
a(8) = 6 * 8^7
a(8) = 6 * 2097152
a(8) = 12582912 <==