The boiling point (or condensation point) of a substance is defined as the temperature at which the vapor pressure of the liquid is exactly equal to the external pressure. Above the boiling point, the substance exists as a gas and below, it exists predominately as a liquid.
There are 26 electrons in the nickel ion in the compound NiS.
<h3>How many electrons does the nickel ion contain in the compound NiS?</h3>
The number of electrons in a neutral Nickel atom is obtained from the atomic number of Nickel.
The atomic number of Nickel is 28, therefore, the neutral nickel atom has 28 electrons.
In the compound NiS, nickel atom loses two electrons to to form the nickel ion.
Number of electrons left = 28 - 2 = 26
Therefore, there are 26 electrons in the nickel ion in the compound NiS.
In conclusion, nickel atom loses two electrons to form nickel ion in NiS.
Learn more about electrons at: brainly.com/question/860094
#SPJ1
Explanation:
Bromine is a chemical element with the symbol Br and atomic number 35. It is the third-lightest halogen, and is a fuming red-brown liquid at room temperature that evaporates readily to form a similarly coloured vapour. Its properties are intermediate between those of chlorine and iodine. Isolated independently by two chemists, Carl Jacob Löwig (in 1825) and Antoine Jérôme Balard (in 1826), its name was derived from the Ancient Greek βρῶμος ("stench"), referring to its sharp and disagreeable smell.
Bromine, 35Br
Answer:
The mass is 1.4701 grams and the moles is 0.01.
Explanation:
Based on the given question, the volume of the solution is 100 ml or 0.1 L and the molarity of the solution is 0.100 M. The moles of the solute (in the given case calcium chloride dihydride (CaCl2. H2O) can be determined by using the formula,
Molarity = moles of solute/volume of solution in liters
Now putting the values we get,
0.100 = moles of solute/0.1000
Moles of solute = 0.100 * 0.1000
= 0.01 moles
The mass of CaCl2.2H2O can be determined by using the formula,
Moles = mass/molar mass
The molar mass of CaCl2.2H2O is 147.01 gram per mole. Now putting the values we get,
0.01 = mass / 147.01
Mass = 147.01 * 0.01
= 1.4701 grams.