Answer:
Molarity = 0.08 M
Explanation:
Given data:
Mass of sodium carbonate = 10.6 g
Volume of water = 1.25 L
Molarity of solution = ?
Solution:
First of all we will calculate the moles of solute.
Number of moles = mass/molar mass
Number of moles = 10.6 g/ 106 g/mol
Number of moles = 0.1 mol
Formula:
Molarity = moles of solute / volume of solution in L
Now we will put the values in formula.
Molarity = 0.1 mol / 1.25 L
Molarity = 0.08 M
Answer: B
Explanation: I answered randomly
Answer:
3
Explanation:
Subscript basically tells you the number of element or ions present in a compound. In this case the subscript of carbon which is 3 denotes that only three carbon atoms is present in the compound.
Answer:
During a solar flare, the built up magnetic energy n the solar atmosphere is released at once. If a strong solar flare hits the earth, it is most possible that it will destroy the electronics. It is not expected to effect any human beings unless they are travelling towards the outer space are living at higher altitudes.
It can lead to skin can in case of extreme exposures.
I hope the answer is helpful.
Thanks for answering.
Answer: 3) 39.96 amu
Explanation:
Mass of isotope Ar- 36 = 35.97 amu
% abundance of isotope Ar- 36= 0.337% = 
Mass of isotope Ar- 38 = 37.96 amu
% abundance of isotope 2 = 0.063 % = 
Mass of isotope Ar- 40 = 39.96 amu
% abundance of isotope 2 = 99.600 % = 
Formula used for average atomic mass of an element :

![A=\sum[(35.97\times 3.37\times 10^{-3})+(37.96\times 6.3\times 10^{-4})+(39.96\times 0.996)]](https://tex.z-dn.net/?f=A%3D%5Csum%5B%2835.97%5Ctimes%203.37%5Ctimes%2010%5E%7B-3%7D%29%2B%2837.96%5Ctimes%206.3%5Ctimes%2010%5E%7B-4%7D%29%2B%2839.96%5Ctimes%200.996%29%5D)

Therefore, the average atomic mass of argon is 39.96 amu