Hello!
The number of 20-g ice cubes required to absorb 47 kJ from a glass of water upon melting is 7 icecubes
Why?
We are going to clear from the equation of the released heat, the mass of ice (m). The specific latent heat of fusion of ice is 336 kJ/kg:

So, 7 ice cubes are required to absorb that amount of heat from the glass of water.
Have a nice day!
<u><em>Answer: Chemical reaction, a process in which one or more substances, the reactants, are converted to one or more different substances, the products.</em></u>
Explanation:
I believe the correct answer is option B. Molarity is the <span>number of moles of solute that is dissolved in 1 liter of solution. It is another way of expressing concentration of a mixture especially for solutions. Percent by mass is grams solute per grams of solution. Percent by volume is liter solute per liter per solution.</span>
Answer:
Rate = k . [B]² . [C]
Explanation:
The dependence of the reaction rate on the concentration of the reactants is given by the reaction order of each one, as shown in the rate equation.
![Rate=k.[A]^{x} .[B]^{y} .[C]^{z}](https://tex.z-dn.net/?f=Rate%3Dk.%5BA%5D%5E%7Bx%7D%20.%5BB%5D%5E%7By%7D%20.%5BC%5D%5E%7Bz%7D)
where,
k is the rate constant
x, y, z are the reaction orders.
- <em>The rate of reaction is not affected by changing the concentration of species A.</em> This means that the reaction order for A is x = 0 since when its concentration changes, the rate stays the same.
- <em>Leaving all other factors identical, doubling the concentration of species B increases the rate by a factor of 4.</em> This means that the reaction order for B is y = 2, so when the concentration is doubled, the new rate is 2² = 4 times the initial rate.
- The rate of the reaction is linearly dependent on the concentration of C. This means that the reaction order for C is z = 1, that is, a linear dependence.
All in all, the rate equation is:
Rate = k . [B]² . [C]